Although knowing the feeder topology and line impedances is a prerequisite for solving any grid optimization task, utilities oftentimes have limited or outdated information on their electric network assets. Given the rampant integration of smart inverters, we have previously advocated perturbing their power injections to unveil the underlying grid topology using the induced voltage responses. Under an approximate grid model, the perturbed power injections and the collected voltage deviations obey a linear regression setup, where the unknown is the vector of line resistances. Building on this model, topology processing can be performed in two steps. Given a candidate radial topology, the line resistances can be estimated via a least-squares (LS) fit on the probing data. The topology attaining the best fit can be then selected. To avoid evaluating the exponentially many candidate topologies, this two-step approach is uniquely formulated as a mixed-integer linear program (MILP) using the McCormick relaxation. If the recovered topology is not radial, a second, computationally more demanding MILP confines the search only within radial topologies. Numerical tests explain how topology recovery depends on the noise level and probing duration, and demonstrate that the first simpler MILP yields a tree topology in 90% of the cases tested.
more »
« less
A complete metric topology on relative low energy spaces
In this paper, we show that the low energy spaces in the prescribed singularity case Eψ (X, θ, φ) have a natural topology which is completely metrizable. This topology is stronger than convergence in capacity.
more »
« less
- Award ID(s):
- 1846942
- PAR ID:
- 10523912
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Mathematische Zeitschrift
- Volume:
- 303
- Issue:
- 3
- ISSN:
- 0025-5874
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
mmWave communication is a highly promising technology for 5G wireless backhaul. However, network performance is hard to predict due to the sensitivity of mmWave signals to blockages. In this paper, we propose an analytical framework to incorporate blockage effects and evaluate blockage robustness within a previously proposed interference-free topology for roadside relay-assisted mmWave backhaul. Through stochastic geometric analysis, the blockage probabilities for four types of blockages identified in prior work are derived as a function of the topology parameters and obstacle density. Analysis of the effect of topology parameters on blockage probability yields insight that leads to a modified topology, which maintains the desirable interference-free property but has better blockage robustness than the original topology. Simulation results demonstrate that the modified topology can maintain very high throughput and has significantly improved robustness as compared to the original topology, while using the same number of relays.more » « less
-
Topology optimization problems are typically non-convex, and as such, multiple local minima exist. Depending on the initial design, the type of optimization algorithm and the optimization parameters, gradient-based optimizers converge to one of those minima. Unfortunately, these minima can be highly suboptimal, particularly when the structural response is very non-linear or when multiple constraints are present. This issue is more pronounced in the topology optimization of geometric primitives, because the design representation is more compact and restricted than in free-form topology optimization. In this paper, we investigate the use of tunneling in topology optimization to move from a poor local minimum to a better one. The tunneling method used in this work is a gradient-based deterministic method that finds a better minimum than the previous one in a sequential manner. We demonstrate this approach via numerical examples and show that the coupling of the tunneling method with topology optimization leads to better designs.more » « less
-
The bandwidth and latency requirements of modern datacenter applications have led researchers to propose various topology designs using static, dynamic demand-oblivious (rotor), and/or dynamic demand-aware switches. However, given the diverse nature of datacenter traffic, there is little consensus about how these designs would fare against each other. In this work, we analyze the throughput of existing topology designs under different traffic patterns and study their unique advantages and potential costs in terms of bandwidth and latency ''tax''. To overcome the identified inefficiencies, we propose Cerberus, a unified, two-layer leaf-spine optical datacenter design with three topology types. Cerberus systematically matches different traffic patterns with their most suitable topology type: e.g., latency-sensitive flows are transmitted via a static topology, all-to-all traffic via a rotor topology, and elephant flows via a demand-aware topology. We show analytically and in simulations that Cerberus can improve throughput significantly compared to alternative approaches and operate datacenters at higher loads while being throughput-proportional.more » « less
-
Topology has emerged as a field for describing and controlling order and matter, and thereby the physical properties of materials. There are several largely disparate fields focused on examining and manipulating topology. One of these arenas is in the realm of real space, manipulating systems in terms of their spatial properties, to control the corresponding structural, mechanical, and self- assembling responses. Much of the work in soft matter topology falls within this domain. A second arena is in the domain of momentum or k-space wherein topology controls the features of the electronic band structure of materials, and topologically non-trivial features result in the development of materials with truly unique properties. This work focuses squarely on the realm of condensed matter physics. Here, we review concepts of real- and k-space topology and propose areas for convergence between these two disparate fields.more » « less
An official website of the United States government

