skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative Image Analysis of Fractal‐Like Thin Films of Organic Semiconductors
ABSTRACT Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried outviaimage analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then use this program in a case study of meniscus‐guided coating of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C8‐BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1622–1634  more » « less
Award ID(s):
1847828
PAR ID:
10459785
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science Part B: Polymer Physics
Volume:
57
Issue:
23
ISSN:
0887-6266
Page Range / eLocation ID:
p. 1622-1634
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The physical aging behavior, time‐dependent densification, of thin polystyrene (PS) films supported on silicon are investigated using ellipsometry for a large range of molecular weights (MWs) fromMw = 97 to 10,100 kg mol−1. We report an unexpected MW dependence to the physical aging rate ofh < 80‐nm thick films not present in bulk films, where samples made from ultra‐high MWs ≥ 6500 kg mol−1exhibit on average a 45% faster aging response at an aging temperature of 40 °C compared with equivalent films made from (merely) high MWs ≤ 3500 kg mol−1. This MW‐dependent difference in physical aging response indicates that the breadth of the gradient in dynamics originating from the free surface in these thin films is diminished for films of ultra‐high MW PS. In contrast, measures of the film‐average glass transition temperatureTg(h) and effective average film density (molecular packing) show no corresponding change for the same range of film thicknesses, suggesting physical aging may be more sensitive to differences in dynamical gradients. These results contribute to growing literature reports signaling that chain connectivity and entropy play a subtle, but important role in how glassy dynamics are propagated from interfaces. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1224–1238 
    more » « less
  2. ABSTRACT Sulfur and oleic acid, two components of industrial waste/byproducts, were combined in an effort to prepare more sustainable polymeric materials. Zinc oxide was employed to serve the dual role of compatibilizing immiscible sulfur and oleic acid as well as to suppress evolution of toxic H2S gas during reaction at high temperature. The reaction of sulfur, oleic acid, and zinc oxide led to a series of composites,ZOSx(x= wt % sulfur, wherexis 8–99). TheZOSxmaterials ranged from sticky tars to hard solids at room temperature. TheZOSxcompositions were assessed by1H NMR spectrometry, FTIR spectroscopy, and elemental microanalysis. CopolymersZOS59‐99, were further analyzed for thermal and mechanical properties by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Remarkably, evenZOS99, comprising only 1 wt % of zinc oxide/oleic acid (99 wt % S) exhibits at least an eightfold increase in storage modulus compared to sulfur alone. The four solid samples (59–99 wt % S) were thermally healable and readily remeltable with full retention of mechanical durability. These materials represent a valuable proof‐of‐concept for sustainably sourced, recyclable materials from unsaturated fatty acid waste products. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1704–1710 
    more » « less
  3. ABSTRACT Rotational and oscillatory shear rheometry were used to quantify the flow behavior under minimal and significant solvent evaporation conditions for polymer solutions used to fabricate isoporous asymmetric membranes by the self‐assembly and non‐solvent induced phase separation (SNIPS) method. Three different A‐B‐C triblock terpolymer chemistries of similar molar mass were evaluated: polyisoprene‐b‐polystyrene‐b‐poly(4‐vinylpyridine) (ISV); polyisoprene‐b‐polystyrene‐b‐poly(N,N‐dimethylacrylamide) (ISD); and polyisoprene‐b‐polystyrene‐b‐poly(tert‐butyl methacrylate) (ISB). Solvent evaporation resulted in the formation of a viscoelastic film typical of asymmetric membranes. Solution viscosity and film viscoelasticity were strongly dependent on the chemical structure of the triblock terpolymer molecules. A hierarchical magnitude (ISV > ISB > ISD) was observed for both properties, with ISV solutions displaying the greatest solution viscosity, fastest film strength development, and greatest strength magnitude. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47038. 
    more » « less
  4. ABSTRACT Thermomechanical properties of polymers highly depend on their glass transition temperature (Tg). Differential scanning calorimetry (DSC) is commonly used to measureTgof polymers. However, many conjugated polymers (CPs), especially donor–acceptor CPs (D–A CPs), do not show a clear glass transition when measured by conventional DSC using simple heat and cool scan. In this work, we discuss the origin of the difficulty for measuringTgin such type of polymers. The changes in specific heat capacity (Δcp) atTgwere accurately probed for a series of CPs by DSC. The results showed a significant decrease in Δcpfrom flexible polymer (0.28 J g−1K−1for polystyrene) to rigid CPs (10−3J g−1K−1for a naphthalene diimide‐based D–A CP). When a conjugation breaker unit (flexible unit) is added to the D–A CPs, we observed restoration of the ΔcpatTgby a factor of 10, confirming that backbone rigidity reduces the Δcp. Additionally, an increase in the crystalline fraction of the CPs further reduces Δcp. We conclude that the difficulties of determiningTgfor CPs using DSC are mainly due to rigid backbone and semicrystalline nature. We also demonstrate that physical aging can be used on DSC to help locate and confirm the glass transition for D‐A CPs with weak transition signals. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1635–1644 
    more » « less
  5. ABSTRACT Ternary block copolymer (BCP)‐homopolymer (HP) blends offer a simple method for tuning nanostructure sizes to meet application‐specific demands. Comprehensive dissipative particle dynamic (DPD) simulations were performed to study the impact of polymer interactions, molecular weight, and HP volume fraction (φHP) on symmetric ternary blend morphological stability and domain spacing. DPD reproduces key features of the experimental phase diagram, including lamellar domain swelling with increasingφHP, the formation of an asymmetric bicontinuous microemulsion at a critical HP concentration , and macrophase separation with further HP addition. Simulation results matched experimental values for and lamellar swelling as a function of HP to BCP chain length ratio,α = NHP/NBCP. Structural analysis of blends with fixedφHPbut varyingαconfirmed that ternary blends follow the wet/dry brush model of domain swelling with the miscibility of HPs and BCPs depending onα. Longer HPs concentrate in the center of domains, boosting their swelling efficiencies compared to shorter chains. These results advance our understanding of BCP‐HP blend phase behavior and demonstrate the value of DPD for studying polymeric blends. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 794–803 
    more » « less