skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast Multi-Modal Multi-Instance Support Vector Machine for Fine-grained Chest X-ray Recognition
Chest X-ray (CXR) analysis plays an important role in patient treatment. As such, a multitude of machine learning models have been applied to CXR datasets attempting automated analysis. However, each patient has a differing number of images per angle, and multi-modal learning should deal with the missing data for specific angles and times. Furthermore, the large dimensionality of multi-modal imaging data with the shapes inconsistent across the dataset introduces the challenges in training. In light of these issues, we propose the Fast Multi-Modal Support Vector Machine (FMMSVM) which incorporates modality-specific factorization to deal with missing CXRs in the specific angle. Our model is able to adjust the fine-grained details in feature extraction and we provide an efficient optimization algorithm scalable to a large number of features. In our experiments, FMMSVM shows clearly improved classification performance.  more » « less
Award ID(s):
2029543 1932482 1849359 1652943
PAR ID:
10508017
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE ICDM 2023
ISBN:
979-8-3503-0788-7
Page Range / eLocation ID:
1295 to 1300
Subject(s) / Keyword(s):
Scalability, Multi-Instance, Multi-Modal, Support Vector Machine
Format(s):
Medium: X
Location:
Shanghai, China
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-modal data are prevalent in many scientific fields. In this study, we consider the parameter estimation and variable selection for a multi-response regression using block-missing multi-modal data. Our method allows the dimensions of both the responses and the predictors to be large, and the responses to be incomplete and correlated, a common practical problem in high-dimensional settings. Our proposed method uses two steps to make a prediction from a multi-response linear regression model with block-missing multi-modal predictors. In the first step, without imputing missing data, we use all available data to estimate the covariance matrix of the predictors and the cross-covariance matrix between the predictors and the responses. In the second step, we use these matrices and a penalized method to simultaneously estimate the precision matrix of the response vector, given the predictors, and the sparse regression parameter matrix. Lastly, we demonstrate the effectiveness of the proposed method using theoretical studies, simulated examples, and an analysis of a multi-modal imaging data set from the Alzheimer’s Disease Neuroimaging Initiative. 
    more » « less
  2. Abstract Current biotechnologies can simultaneously measure multiple high-dimensional modalities (e.g., RNA, DNA accessibility, and protein) from the same cells. A combination of different analytical tasks (e.g., multi-modal integration and cross-modal analysis) is required to comprehensively understand such data, inferring how gene regulation drives biological diversity and functions. However, current analytical methods are designed to perform a single task, only providing a partial picture of the multi-modal data. Here, we present UnitedNet, an explainable multi-task deep neural network capable of integrating different tasks to analyze single-cell multi-modality data. Applied to various multi-modality datasets (e.g., Patch-seq, multiome ATAC + gene expression, and spatial transcriptomics), UnitedNet demonstrates similar or better accuracy in multi-modal integration and cross-modal prediction compared with state-of-the-art methods. Moreover, by dissecting the trained UnitedNet with the explainable machine learning algorithm, we can directly quantify the relationship between gene expression and other modalities with cell-type specificity. UnitedNet is a comprehensive end-to-end framework that could be broadly applicable to single-cell multi-modality biology. This framework has the potential to facilitate the discovery of cell-type-specific regulation kinetics across transcriptomics and other modalities. 
    more » « less
  3. In this work, we present CogBeacon, a multi-modal dataset designed to target the effects of cognitive fatigue in human performance. The dataset consists of 76 sessions collected from 19 male and female users performing different versions of a cognitive task inspired by the principles of the Wisconsin Card Sorting Test (WCST), a popular cognitive test in experimental and clinical psychology designed to assess cognitive flexibility, reasoning, and specific aspects of cognitive functioning. During each session, we record and fully annotate user EEG functionality, facial keypoints, real-time self-reports on cognitive fatigue, as well as detailed information of the performance metrics achieved during the cognitive task (success rate, response time, number of errors, etc.). Along with the dataset we provide free access to the CogBeacon data-collection software to provide a standardized mechanism to the community for collecting and annotating physiological and behavioral data for cognitive fatigue analysis. Our goal is to provide other researchers with the tools to expand or modify the functionalities of the CogBeacon data-collection framework in a hardware-independent way. As a proof of concept we show some preliminary machine learning-based experiments on cognitive fatigue detection using the EEG information and the subjective user reports as ground truth. Our experiments highlight the meaningfulness of the current dataset, and encourage our efforts towards expanding the CogBeacon platform. To our knowledge, this is the first multi-modal dataset specifically designed to assess cognitive fatigue and the only free software available to allow experiment reproducibility for multi-modal cognitive fatigue analysis. 
    more » « less
  4. Data driven individualized decision making problems have received a lot of attentions in recent years. In particular, decision makers aim to determine the optimal Individualized Treatment Rule (ITR) so that the expected speci ed outcome averaging over heterogeneous patient-speci c characteristics is maximized. Many existing methods deal with binary or a moderate number of treatment arms and may not take potential treatment e ect structure into account. However, the e ectiveness of these methods may deteriorate when the number of treatment arms becomes large. In this article, we propose GRoup Outcome Weighted Learning (GROWL) to estimate the latent structure in the treatment space and the op- timal group-structured ITRs through a single optimization. In particular, for estimating group-structured ITRs, we utilize the Reinforced Angle based Multicategory Support Vec- tor Machines (RAMSVM) to learn group-based decision rules under the weighted angle based multi-class classi cation framework. Fisher consistency, the excess risk bound, and the convergence rate of the value function are established to provide a theoretical guaran- tee for GROWL. Extensive empirical results in simulation studies and real data analysis demonstrate that GROWL enjoys better performance than several other existing methods. 
    more » « less
  5. There are insufficient accurate biomarkers and effective therapeutic targets in current cancer treatment. Multi-omics regulatory networks in patient bulk tumors and single cells can shed light on molecular disease mechanisms. Integration of multi-omics data with large-scale patient electronic medical records (EMRs) can lead to the discovery of biomarkers and therapeutic targets. In this review, multi-omics data harmonization methods were introduced, and common approaches to molecular network inference were summarized. Our Prediction Logic Boolean Implication Networks (PLBINs) have advantages over other methods in constructing genome-scale multi-omics networks in bulk tumors and single cells in terms of computational efficiency, scalability, and accuracy. Based on the constructed multi-modal regulatory networks, graph theory network centrality metrics can be used in the prioritization of candidates for discovering biomarkers and therapeutic targets. Our approach to integrating multi-omics profiles in a patient cohort with large-scale patient EMRs such as the SEER-Medicare cancer registry combined with extensive external validation can identify potential biomarkers applicable in large patient populations. These methodologies form a conceptually innovative framework to analyze various available information from research laboratories and healthcare systems, accelerating the discovery of biomarkers and therapeutic targets to ultimately improve cancer patient survival outcomes. 
    more » « less