skip to main content


Search for: All records

Award ID contains: 1850774

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The acceleration of charged particles by interplanetary shocks (IPs) can drain a nonnegligible fraction of the plasma pressure. In this study, we have selected 17 IPs observed in situ at 1 au by the Advanced Composition Explorer and the Wind spacecraft, and 1 shock at 0.8 au observed by Parker Solar Probe. We have calculated the time-dependent partial pressure of suprathermal and energetic particles (smaller and greater than 50 keV for protons and 30 keV for electrons, respectively) in both the upstream and downstream regions. The particle fluxes were averaged for 1 hr before and 1 hr after the shock time to remove short timescale effects. Using the MHD Rankine–Hugoniot jump conditions, we find that the fraction of the total upstream energy flux transferred to suprathermal and energetic downstream particles is typically ≲16%, in agreement with previous observations and simulations. Notably, by accounting for errors on all measured shock parameters, we have found that for any given fast magnetosonic Mach number,Mf< 7, the angle between the shock normal and average upstream magnetic field,θBn, is not correlated with the energetic particle pressure; in particular, the partial pressure of energized particles does not decrease forθBn≳ 45°. The downstream electron-to-proton energy ratio in the range ≳ 140 eV for electrons and ≳ 70 keV for protons exceeds the expected ∼1% and nears equipartition (>0.1) for the Wind events.

     
    more » « less
  2. Abstract Energetic particles emitted by active stars are likely to propagate in astrospheric magnetized plasma and disrupted by the prior passage of energetic coronal mass ejections (CMEs). We carried out test-particle simulations of ∼GeV protons produced at a variety of distances from the M1Ve star AU Microscopii by coronal flares or traveling shocks. Particles are propagated within a large-scale quiescent three-dimensional magnetic field and stellar wind reconstructed from measured magnetograms, and within the same stellar environment following the passage of a 10 36 erg kinetic energy CME. In both cases, magnetic fluctuations with an isotropic power spectrum are overlayed onto the large-scale stellar magnetic field and particle propagation out to the two innnermost confirmed planets is examined. In the quiescent case, the magnetic field concentrates the particles into two regions near the ecliptic plane. After the passage of the CME, the closed field lines remain inflated and the reshuffled magnetic field remains highly compressed, shrinking the scattering mean free path of the particles. In the direction of propagation of the CME lobes the subsequent energetic particle (EP) flux is suppressed. Even for a CME front propagating out of the ecliptic plane, the EP flux along the planetary orbits highly fluctuates and peaks at ∼2–3 orders of magnitude higher than the average solar value at Earth, both in the quiescent and the post-CME cases. 
    more » « less