Abstract The management of diabetes in a manner offering autonomous insulin therapy responsive to glucose‐directed need, and moreover with a dosing schedule amenable to facile administration, remains an ongoing goal to improve the standard of care. While basal insulins with reduced dosing frequency, even once‐weekly administration, are on the horizon, there is still no approved therapy that offers glucose‐responsive insulin function. Herein, a nanoscale complex combining both electrostatic‐ and dynamic‐covalent interactions between a synthetic dendrimer carrier and an insulin analogue modified with a high‐affinity glucose‐binding motif yields an injectable insulin depot affording both glucose‐directed and long‐lasting insulin availability. Following a single injection, it is even possible to control blood glucose for at least one week in diabetic swine subjected to daily oral glucose challenges. Measurements of serum insulin concentration in response to challenge show increases in insulin corresponding to elevated blood glucose levels, an uncommon finding even in preclinical work on glucose‐responsive insulin. Accordingly, the subcutaneous nanocomplex that results from combining electrostatic‐ and dynamic‐covalent interactions between a modified insulin and a synthetic dendrimer carrier affords a glucose‐responsive insulin depot for week‐long control following a single routine injection.
more »
« less
Pulsatile Basal Insulin Secretion Is Driven by Glycolytic Oscillations
In fasted and fed states, blood insulin levels are oscillatory. While this phenomenon is well studied at high glucose levels, comparatively little is known about its origin under basal conditions. We propose a possible mechanism for basal insulin oscillations based on oscillations in glycolysis, demonstrated using an established mathematical model. At high glucose, this is superseded by a calcium-dependent mechanism.
more »
« less
- Award ID(s):
- 1853342
- PAR ID:
- 10346033
- Date Published:
- Journal Name:
- Physiology
- Volume:
- 37
- Issue:
- 4
- ISSN:
- 1548-9213
- Page Range / eLocation ID:
- 216 to 223
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we provide an approach to data-driven control for artificial pancreas systems by learning neural network models of human insulin-glucose physiology from available patient data and using a mixed integer optimization approach to control blood glucose levels in real-time using the inferred models. First, our approach learns neural networks to predict the future blood glucose values from given data on insulin infusion and their resulting effects on blood glucose levels. However, to provide guarantees on the resulting model, we use quantile regression to fit multiple neural networks that predict upper and lower quantiles of the future blood glucose levels, in addition to the mean. Using the inferred set of neural networks, we formulate a model-predictive control scheme that adjusts both basal and bolus insulin delivery to ensure that the risk of harmful hypoglycemia and hyperglycemia are bounded using the quantile models while the mean prediction stays as close as possible to the desired target. We discuss how this scheme can handle disturbances from large unannounced meals as well as infeasibilities that result from situations where the uncertainties in future glucose predictions are too high. We experimentally evaluate this approach on data obtained from a set of 17 patients over a course of 40 nights per patient. Furthermore, we also test our approach using neural networks obtained from virtual patient models available through the UVA-Padova simulator for type-1 diabetes.more » « less
-
Abstract Type 1 and advanced type 2 diabetes treatment involves daily injections or continuous infusion of exogenous insulin aimed at regulating blood glucose levels in the normoglycemic range. However, current options for insulin therapy are limited by the risk of hypoglycemia and are associated with suboptimal glycemic control outcomes. Therefore, a range of glucose‐responsive components that can undergo changes in conformation or show alterations in intermolecular binding capability in response to glucose stimulation has been studied for ultimate integration into closed‐loop insulin delivery or “smart insulin” systems. Here, an overview of the evolution and recent progress in the development of molecular approaches for glucose‐responsive insulin delivery systems, a rapidly growing subfield of precision medicine, is presented. Three central glucose‐responsive moieties, including glucose oxidase, phenylboronic acid, and glucose‐binding molecules are examined in detail. Future opportunities and challenges regarding translation are also discussed.more » « less
-
Insulin pulsatility is important to hepatic response in regulating blood glucose. Growing evidence suggests that insulin-secreting pancreatic β-cells can adapt to chronic disruptions of pulsatility to rescue this physiologically important behavior. We determined the time scale for adaptation and examined potential ion channels underlying it. We induced the adaptation both by chronic application of the ATP-sensitive K + [K(ATP)] channel blocker tolbutamide and by application of the depolarizing agent potassium chloride (KCl). Acute application of tolbutamide without pretreatment results in elevated Ca 2+ as measured by fura-2AM and the loss of endogenous pulsatility. We show that after chronic exposure to tolbutamide (12–24 h), Ca 2+ oscillations occur with subsequent acute tolbutamide application. The same experiment was conducted with potassium chloride (KCl) to directly depolarize the β-cells. Once again, following chronic exposure to the cell stimulator, the islets produced Ca 2+ oscillations when subsequently exposed to tolbutamide. These experiments suggest that it is the chronic stimulation, and not tolbutamide desensitization, that is responsible for the adaptation that rescues oscillatory β-cell activity. This compensatory response also causes islet glucose sensitivity to shift rightward following chronic tolbutamide treatment. Mathematical modeling shows that a small increase in the number of K(ATP) channels in the membrane is one adaptation mechanism that is compatible with the data. To examine other compensatory mechanisms, pharmacological studies provide support that Kir2.1 and TEA-sensitive channels play some role. Overall, this investigation demonstrates β-cell adaptability to overstimulation, which is likely an important mechanism for maintaining glucose homeostasis in the face of chronic stimulation.more » « less
-
This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions. Glucose responsiveness is driven by reversible binding between PBA and glucose, which modulates the electrostatic interactions necessary for hydrogel formation and dissolution. Through comprehensive in vitro characterization, including circular dichroism, zeta potential measurements, and rheological assessments, the PA-PBA system is found to exhibit glucose-dependent assembly, enabling controlled glucagon release that is inversely related to glucose concentration. Glucagon release is accelerated under low glucose conditions, simulating a hypoglycemic state, with a reduced rate seen at higher glucose levels. Evaluation of the platform in vivo using a type 1 diabetic mouse model demonstrates efficacy in protecting against insulin-induced hypoglycemia by restoring blood glucose levels following an insulin overdose. The ability to tailor glucagon release in response to fluctuating glucose concentrations underscores the potential of this platform for improving glycemic control. These findings suggest that glucose-stabilized supramolecular peptide hydrogels hold significant promise for responsive drug delivery applications, offering an approach to manage glucose levels in diabetes and other metabolic disorders.more » « less
An official website of the United States government

