In this paper, we introduce a novel multi-scale network model of two epidemics: HIV infection and opioid addiction. The HIV infection dynamics is modeled on a complex network. We determine the basic reproduction number of HIV infection, $$ \mathcal{R}_{v} $$, and the basic reproduction number of opioid addiction, $$ \mathcal{R}_{u} $$. We show that the model has a unique disease-free equilibrium which is locally asymptotically stable when both $$ \mathcal{R}_{u} $$ and $$ \mathcal{R}_{v} $$ are less than one. If $$ \mathcal{R}_{u} > 1 $$ or $$ \mathcal{R}_{v} > 1 $$, then the disease-free equilibrium is unstable and there exists a unique semi-trivial equilibrium corresponding to each disease. The unique opioid only equilibrium exist when the basic reproduction number of opioid addiction is greater than one and it is locally asymptotically stable when the invasion number of HIV infection, $$ \mathcal{R}^{1}_{v_i} $$ is less than one. Similarly, the unique HIV only equilibrium exist when the basic reproduction number of HIV is greater than one and it is locally asymptotically stable when the invasion number of opioid addiction, $$ \mathcal{R}^{2}_{u_i} $$ is less than one. Existence and stability of co-existence equilibria remains an open problem. We performed numerical simulations to better understand the impact of three epidemiologically important parameters that are at the intersection of two epidemics: $$ q_v $$ the likelihood of an opioid user being infected with HIV, $$ q_u $$ the likelihood of an HIV-infected individual becoming addicted to opioids, and $$ \delta $$ recovery from opioid addiction. Simulations suggest that as the recovery from opioid use increases, the prevalence of co-affected individuals, those who are addicted to opioids and are infected with HIV, increase significantly. We demonstrate that the dependence of the co-affected population on $$ q_u $$ and $$ q_v $$ are not monotone.
more »
« less
Asymptotic and transient dynamics of SEIR epidemic models on weighted networks
We study the effect of population mobility on the transmission dynamics of infectious diseases by considering a susceptible-exposed-infectious-recovered (SEIR) epidemic model with graph Laplacian diffusion, that is, on a weighted network. First, we establish the existence and uniqueness of solutions to the SEIR model defined on a weighed graph. Then by constructing Liapunov functions, we show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity and the endemic equilibrium is globally asymptotically stable if the basic reproduction number is greater than unity. Finally, we apply our generalized weighed graph to Watts–Strogatz network and carry out numerical simulations, which demonstrate that degrees of nodes determine peak numbers of the infectious population as well as the time to reach these peaks. It also indicates that the network has an impact on the transient dynamical behaviour of the epidemic transmission.
more »
« less
- Award ID(s):
- 1853622
- PAR ID:
- 10329457
- Date Published:
- Journal Name:
- European Journal of Applied Mathematics
- ISSN:
- 0956-7925
- Page Range / eLocation ID:
- 1 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)As COVID-19 cases continue to rise globally, many researchers have developed mathematical models to help capture the dynamics of the spread of COVID-19. Specifically, the compartmental SEIR model andits variations have been widely employed. These models differ in the type of compartments included, nature of the transmission rates, seasonality, and several other factors. Yet, while the spread of COVID-19 is largely attributed to a wide range of social behaviors in the population, several of these SEIR models do not account for such behaviors. In this project, we consider novel SEIR-based models that incorporate various behaviors. We created a baseline model and explored incorporating both explicit and implicit behavioral changes. Furthermore, using the Next Generation Matrix method, we derive a basic reproduction number, which indicates the estimated number of secondary cases by a single infected individual. Numerical simulations for the various models we made were performed and user-friendly graphical user interfaces were created. In the future, we plan to expand our project to account for the use of face masks, age-based behaviors and transmission rates, and mixing patterns.more » « less
-
Abstract We employ individual-based Monte Carlo computer simulations of a stochastic SEIR model variant on a two-dimensional Newman–Watts small-world network to investigate the control of epidemic outbreaks through periodic testing and isolation of infectious individuals, and subsequent quarantine of their immediate contacts. Using disease parameters informed by the COVID-19 pandemic, we investigate the effects of various crucial mitigation features on the epidemic spreading: fraction of the infectious population that is identifiable through the tests; testing frequency; time delay between testing and isolation of positively tested individuals; and the further time delay until quarantining their contacts as well as the quarantine duration. We thus determine the required ranges for these intervention parameters to yield effective control of the disease through both considerable delaying the epidemic peak and massively reducing the total number of sustained infections.more » « less
-
In this paper, we present a discrete-time networked SEIR model using population flow, its derivation, and assumptions under which this model is well defined. We identify properties of the system’s equilibria, namely the healthy states. We show that the set of healthy states is asymptotically stable, and that the value of the equilibria becomes equal across all sub-populations as a result of the network flow model. Furthermore, we explore closed-loop feedback control of the system by limiting flow between sub-populations as a function of the current infected states. These results are illustrated via simulation based on flight traffic between major airports in the United States. We find that a flow restriction strategy combined with a vaccine roll-out significantly reduces the total number of infections over the course of an epidemic, given that the initial flow restriction response is not delayed.more » « less
-
null (Ed.)When a rare pathogen emerges to cause a pandemic, it is critical to understand its dynamics and the impact of mitigation measures. We use experimental data to parametrize a temperature-dependent model of Zika virus (ZIKV) transmission dynamics and analyse the effects of temperature variability and control-related parameters on the basic reproduction number ( R 0 ) and the final epidemic size of ZIKV. Sensitivity analyses show that these two metrics are largely driven by different parameters, with the exception of temperature, which is the dominant driver of epidemic dynamics in the models. Our R 0 estimate has a single optimum temperature (≈30°C), comparable to other published results (≈29°C). However, the final epidemic size is maximized across a wider temperature range, from 24 to 36°C. The models indicate that ZIKV is highly sensitive to seasonal temperature variation. For example, although the model predicts that ZIKV transmission cannot occur at a constant temperature below 23°C (≈ average annual temperature of Rio de Janeiro, Brazil), the model predicts substantial epidemics for areas with a mean temperature of 20°C if there is seasonal variation of 10°C (≈ average annual temperature of Tampa, Florida). This suggests that the geographical range of ZIKV is wider than indicated from static R 0 models, underscoring the importance of climate dynamics and variation in the context of broader climate change on emerging infectious diseases.more » « less
An official website of the United States government

