Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we discuss a situation, which could lead to both wave turbulence and collective behavior kinetic equations. The wave turbulence kinetic models appear in the kinetic limit when the wave equations have local differential operators. Viewing wave equations on the lattice as chains of anharmonic oscillators and replacing the local differential operators (short-range interactions) by non-local ones (long-range interactions), we arrive at a new Vlasov-type kinetic model in the mean field limit under the molecular chaos assumption reminiscent of models for collective behavior in which anharmonic oscillators replace individual particles.more » « less
-
Buttazzo, G. ; Casas, E. ; de Teresa, L. ; Glowinski, R. ; Leugering, G. ; Trélat, E. ; Zhang, X. (Ed.)When the temperature of a trapped Bose gas is below the Bose-Einstein transition temperature and above absolute zero, the gas is composed of two distinct components: the Bose-Einstein condensate and the cloud of thermal excitations. The dynamics of the excitations can be described by quantum Boltzmann models. We establish a connection between quantum Boltzmann models and chemical reaction networks. We prove that the discrete differential equations for these quantum Boltzmann models converge to an equilibrium point. Moreover, this point is unique for all initial conditions that satisfy the same conservation laws. In the proof, we then employ a toric dynamical system approach, similar to the one used to prove the global attractor conjecture, to study the convergence to equilibrium of quantum kinetic equations.more » « less
-
After the pioneering work of Garrett and Munk, the statistics of oceanic internal gravity waves has become a central subject of research in oceanography. The time evolution of the spectral energy of internal waves in the ocean can be described by a near-resonance wave turbulence equation, of quantum Boltzmann type. In this work, we provide the first rigorous mathematical study for the equation by showing the global existence and uniqueness of strong solutions.more » « less
-
In weak turbulence theory, the Kolmogorov–Zakharov spectra is a class of time-independent solutions to the kinetic wave equations. In this paper, we construct a new class of time-dependent isotropic solutions to the decaying turbulence problems (whose solutions are energy conserved), with general initial conditions. These solutions exhibit the interesting property that the energy is cascaded from small wavenumbers to large wavenumbers. We can prove that starting with a regular initial condition whose energy at the infinity wave number |𝑝|=∞ is 0, as time evolves, the energy is gradually accumulated at {|𝑝|=∞}. Finally, all the energy of the system is concentrated at {|𝑝|=∞} and the energy function becomes a Dirac function at infinity 𝐸𝛿{|𝑝|=∞}, where E is the total energy. The existence of this class of solutions is, in some sense, the first complete rigorous mathematical proof based on the kinetic description for the energy cascade phenomenon for waves with quadratic nonlinearities. We only represent in this paper the analysis of the statistical description of acoustic waves (and equivalently capillary waves). However, our analysis works for other cases as well.more » « less