Abstract Meeting ambitious climate targets will require deploying the full suite of mitigation options, including those that indirectly reduce greenhouse-gas (GHG) emissions. Healthy diets have sustainability co-benefits by directly reducing livestock emissions as well as indirectly reducing land use emissions. Increased crop productivity could indirectly avoid emissions by reducing cropland area. However, there is disagreement on the sustainability of proposed healthy U.S. diets and a lack of clarity on how long-term sustainability benefits may change in response to shifts in the livestock sector. Here, we explore the GHG emissions impacts of seven scenarios that vary U.S. crop yields and healthier diets in the U.S. and overseas. We also examine how impacts vary across assumptions of future ruminant livestock productivity and ruminant stocking density in the U.S. We employ two complementary land use models—the US FABLE Calculator, an agricultural and forestry sector accounting model with high agricultural commodity representation, and GLOBIOM, a spatially explicit partial equilibrium optimization model for global land use systems. Results suggest that healthier U.S. diets that follow the Dietary Guidelines for Americans reduce agricultural and land use greenhouse gas emissions by 25–57% (approx 120–310 MtCO2e/y) and pastureland area by 28–38%. The potential emissions and land sparing benefits of U.S. agricultural productivity growth are modest within the U.S. due to the increasing comparative advantage of U.S. crops. Our findings suggest that healthy U.S. diets can significantly contribute toward meeting U.S. long-term climate goals for the land use sectors. 
                        more » 
                        « less   
                    
                            
                            From Uncertainties to Solutions: A Scenario-Based Framework for an Agriculture Protection Zone in Magic Valley Idaho
                        
                    
    
            As growth in the western U.S. continues to lead to the development of land, pressure is being exerted on agricultural production, and could lead to the loss of prime agricultural land. A wide array of perspectives concerning agricultural protection requires a variety of possible solutions. Diverse and plausible scenarios, driven by stakeholders, can be modeled by researchers to guide potential solutions to address key challenges within a region. This paper addresses one stakeholder-defined social-ecological system (SES) solution in the context of southern Idaho, one of the fastest-growing states in the U.S.: agricultural protection zoning. This project demonstrates a method for incorporating an Agriculture Protection Zone (APZ) within a suite of scenarios showing land protection opportunities across a range of future conditions and challenges. The results, by way of a Geodesign framework, entail suitability analyses through a series of weighted raster overlays to analyze scenario-based solutions. The suite of scenario solutions was compared to demonstrate effective proportions of the APZ. The analysis of the results, as a solution gradient, aim to inform policy makers, planners, and developers about the efficiencies of various APZ delineations as well as a methodology to demonstrate the impact of solutions based on assumptions of stakeholder-informed future scenarios. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1856059
- PAR ID:
- 10501371
- Publisher / Repository:
- DOI
- Date Published:
- Journal Name:
- Land
- Volume:
- 12
- Issue:
- 4
- ISSN:
- 2073-445X
- Page Range / eLocation ID:
- 862
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Despite broad consensus on the benefits of a nexus approach to multi-sector planning, actual implementation in government and other decision-making institutions is still rare. This study presents an approach to conducting integrated energy-water-land (EWL) planning, using Uruguay as an example. This stakeholder-driven study focuses on assessing the EWL nexus implications of actual planned policies aimed at strengthening three of Uruguay’s key exports (beef, soy, and rice), which account for more than 40% of total national export revenue. Five scenarios are analyzed in the study: a reference scenario, a climate impacts scenario, and three policy scenarios. The three policy scenarios include measures such as increasing the intensity of beef production while simultaneously decreasing emissions, increasing irrigated soybean production, and improving rice yields. This study supplements previous sector-specific planning efforts in Uruguay by conducting the first stakeholder-driven integrated multi-sector assessment of planned policies in Uruguay using a suite of integrated modeling tools. Key insights from the study are: as compared to a reference scenario, improving beef productivity could lead to cropland expansion (+30%) and significant indirect increases in water requirements (+20%); improving rice yields could lead to increases in total emissions (+3%), which may partially offset emissions reductions from other policies; expanding irrigated soy could have the least EWL impacts amongst the policies studied; and climate-driven changes could have significantly less impact on EWL systems as compared to human actions. The generalizable insights derived from this analysis are readily applicable to other countries facing similar multi-sector planning challenges. In particular, the study’s results reinforce the fact that policies often have multi-sector consequences, and thus policies can impact one another’s efficacy. Thus, policy design and implementation can benefit from coordination across sectors and decision-making institutions.more » « less
- 
            Abstract This study seeks to understand how Argentina's energy, water, and land (EWL) systems will co‐evolve under a representative array of human and earth system influences, including socioeconomic change, climate change, and climate policy. To capture Argentina's sub‐national EWL dynamics in the context of global change, we couple the Global Change Analysis Model with a suite of consistent, gridded sectoral downscaling models to explore multiple stakeholder‐engaged scenarios. Across scenarios, Argentina has the economic opportunity to use its vast land resources to satisfy growing domestic and international demand for crops, such as oil (e.g., soy) and biomass. The human (rather than earth) system produces the most dominant changes in mid‐century EWL resource use. A Reference scenario characterized by modest socioeconomic growth projects a 40% increase in Argentina's agricultural production by 2050 (relative to 2020) by using 50,000 km2of additional cropland and 40% more water. A Climate Policy scenario designed to achieve net‐zero carbon emissions globally shortly after mid‐century projects that Argentina could use 100,000 km2of additional land (and 65% more water) to grow biomass and other crops. The burden of navigating these national opportunities and challenges could fall disproportionately on a subset of Argentina's river basins. The Colorado and Negro basins could experience moderate‐to‐severe water scarcity as they simultaneously navigate substantial irrigated crop demand growth and climate‐induced declines in natural water availability. Argentina serves as a generalizable testbed to demonstrate that multi‐scale EWL planning challenges can be identified and managed more effectively via integrated analysis of coupled human‐earth systems.more » « less
- 
            While stakeholder-driven approaches have been increasingly used in scenario modeling, previous studies have mostly focused on the qualitative elements, e.g., narratives and policy documents, from the stakeholders, but lack engagement of stakeholders with quantitative inputs. In this study, we conducted workshops with a stakeholder group to integrate the participatory mapping of future policies in the simulation, and to compare the environmental impacts after including the participatory mapping. A land system change model named CLUMondo was used to simulate four scenarios, i.e., Business-As-Usual (BAU), Destroying Resources in Owyhee (DRO), Ecological Conservation (EC), and Managed Recreation (MR), in Owyhee County, Idaho, United States. The InVEST models were used to assess water yield, soil erosion, and wildlife habitat under the four scenarios. The results show that the DRO scenario would decrease shrubland and increased grassland, thus leading to less water yield, more soil erosion, and deteriorated wildlife habitat anticipated through to 2050. On the contrary, the EC and MR scenarios reverse the trend and would improve these ecosystem services over the same time horizon. The stakeholder-driven policies appear to influence the spatial distribution of the land system and ecosystem services. The results help to reach a nuanced understanding of the stakeholder-driven scenarios and highlight the importance of engaging stakeholders in scenario modeling and environmental impact analysis.more » « less
- 
            Nutrient runoff from agricultural regions of the midwestern U.S. corn belt has degraded water quality in many inland and coastal water bodies such as the Great Lakes and Gulf of Mexico. Under current climate, observational studies have shown that winter cover crops can reduce dissolved nitrogen and phosphorus losses from row-cropped agricultural watersheds, but performance of cover crops in response to climate variability and climate change has not been systematically evaluated. Using the Soil & Water Assessment Tool (SWAT) model, calibrated using multiple years of field-based data, we simulated historical and projected future nutrient loss from two representative agricultural watersheds in northern Indiana, USA. For 100% cover crop coverage, historical simulations showed a 31–33% reduction in nitrate (NO3−) loss and a 15–23% reduction in Soluble Reactive Phosphorus (SRP) loss in comparison with a no-cover-crop baseline. Under climate change scenarios, without cover crops, projected warmer and wetter conditions strongly increased nutrient loss, especially in the fallow period from Oct to Apr when changes in infiltration and runoff are largest. In the absence of cover crops, annual nutrient losses for the RCP8.5 2080s scenario were 26–38% higher for NO3−, and 9–46% higher for SRP. However, the effectiveness of cover crops also increased under climate change. For an ensemble of 60 climate change scenarios based on CMIP5 RCP4.5 and RCP8.5 scenarios, 19 out of 24 ensemble-mean simulations of future nutrient loss with 100% cover crops were less than or equal to historical simulations with 100% cover crops, despite systematic increases in nutrient loss due to climate alone. These results demonstrate that planting winter cover crops over row-cropped land areas constitutes a robust climate change adaptation strategy for reducing nutrient losses from agricultural lands, enhancing resilience to a projected warmer and wetter winter climate in the midwestern U.S.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    