skip to main content


Search for: All records

Award ID contains: 1856229

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Undirected, binary network data consist of indicators of symmetric relations between pairs of actors. Regression models of such data allow for the estimation of effects of exogenous covariates on the network and for prediction of unobserved data. Ideally, estimators of the regression parameters should account for the inherent dependencies among relations in the network that involve the same actor. To account for such dependencies, researchers have developed a host of latent variable network models; however, estimation of many latent variable network models is computationally onerous and which model is best to base inference upon may not be clear. We propose the probit exchangeable (PX) model for undirected binary network data that is based on an assumption of exchangeability, which is common to many of the latent variable network models in the literature. The PX model can represent the first two moments of any exchangeable network model. We leverage the EM algorithm to obtain an approximate maximum likelihood estimator of the PX model that is extremely computationally efficient. Using simulation studies, we demonstrate the improvement in estimation of regression coefficients of the proposed model over existing latent variable network models. In an analysis of purchases of politically aligned books, we demonstrate political polarization in purchase behavior and show that the proposed estimator significantly reduces runtime relative to estimators of latent variable network models, while maintaining predictive performance. 
    more » « less
  2. Summary Relational arrays represent measures of association between pairs of actors, often in varied contexts or over time. Trade flows between countries, financial transactions between individuals, contact frequencies between school children in classrooms and dynamic protein-protein interactions are all examples of relational arrays. Elements of a relational array are often modelled as a linear function of observable covariates. Uncertainty estimates for regression coefficient estimators, and ideally the coefficient estimators themselves, must account for dependence between elements of the array, e.g., relations involving the same actor. Existing estimators of standard errors that recognize such relational dependence rely on estimating extremely complex, heterogeneous structure across actors. This paper develops a new class of parsimonious coefficient and standard error estimators for regressions of relational arrays. We leverage an exchangeability assumption to derive standard error estimators that pool information across actors, and are substantially more accurate than existing estimators in a variety of settings. This exchangeability assumption is pervasive in network and array models in the statistics literature, but not previously considered when adjusting for dependence in a regression setting with relational data. We demonstrate improvements in inference theoretically, via a simulation study, and by analysis of a dataset involving international trade. 
    more » « less
  3. null (Ed.)