skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The scattering map determines the nonlinearity
Using the two-dimensional nonlinear Schrödinger equation as a model example, we present a general method for recovering the nonlinearity of a nonlinear dispersive equation from its small-data scattering behavior. We prove that under very mild assumptions on the nonlinearity, the wave operator uniquely determines the nonlinearity, as does the scattering map. Evaluating the scattering map on well-chosen initial data, we reduce the problem to an inverse convolution problem, which we solve by means of an application of the Beurling–Lax Theorem.  more » « less
Award ID(s):
1856755 2154022 2054194
PAR ID:
10450510
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We study the scattering problem for the nonlinear Schrödinger equation $$i\partial _t u + \Delta u = |u|^p u$$ on $$\mathbb{R}^d$$, $$d\geq 1$$, with a mass-subcritical nonlinearity above the Strauss exponent. For this equation, it is known that asymptotic completeness in $L^2$ with initial data in $$\Sigma$$ holds and the wave operator is well defined on $$\Sigma$$. We show that there exists $$0<\beta <p$$ such that the wave operator and the data-to-scattering-state map do not admit extensions to maps $$L^2\to L^2$$ of class $$C^{1+\beta }$$ near the origin. This constitutes a mild form of ill-posedness for the scattering problem in the $L^2$ topology. 
    more » « less
  2. Abstract We prove that the small-data scattering map uniquely determines the nonlinearity for a wide class of gauge-invariant, intercritical nonlinear Schrödinger equations. We use the Born approximation to reduce the analysis to a deconvolution problem involving the distribution function for linear Schrödinger solutions. We then solve this deconvolution problem using the Beurling–Lax Theorem. 
    more » « less
  3. This paper considers the attenuated Westervelt equation in pressure formulation. The attenuation is by various models proposed in the literature and characterised by the inclusion of non-local operators that give power law damping as opposed to the exponential of classical models. The goal is the inverse problem of recovering a spatially dependent coefficient in the equation, the parameter of nonlinearity κ ( x ) \kappa (x) , in what becomes a nonlinear hyperbolic equation with non-local terms. The overposed measured data is a time trace taken on a subset of the domain or its boundary. We shall show injectivity of the linearised map from κ \kappa to the overposed data and from this basis develop and analyse Newton-type schemes for its effective recovery. 
    more » « less
  4. We consider the periodic fractional nonlinear Schroedinger equation, where the nonlinearity is expressed in two ways either as a derivative of a polynomial (including negative powers, such including logarithmic nonlinearities), or given as a sum of powers, possibly infinite. We obtain the local well-posedness for the Cauchy problem of this equation in weighted Sobolev spaces and with non-vanishing initial data. 
    more » « less
  5. We investigate the well-posedness in the generalized Hartree equation [Formula: see text], [Formula: see text], [Formula: see text], for low powers of nonlinearity, [Formula: see text]. We establish the local well-posedness for a class of data in weighted Sobolev spaces, following ideas of Cazenave and Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Comm. Contemp. Math. 19(2) (2017) 1650038. This crucially relies on the boundedness of the Riesz transform in weighted Lebesgue spaces. As a consequence, we obtain a class of data that exists globally, moreover, scatters in positive time. Furthermore, in the focusing case in the [Formula: see text]-supercritical setting we obtain a subset of locally well-posed data with positive energy, which blows up in finite time. 
    more » « less