- PAR ID:
- 10450510
- Date Published:
- Journal Name:
- Proceedings of the American Mathematical Society
- ISSN:
- 0002-9939
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract We study the scattering problem for the nonlinear Schrödinger equation $i\partial _t u + \Delta u = |u|^p u$ on $\mathbb{R}^d$, $d\geq 1$, with a mass-subcritical nonlinearity above the Strauss exponent. For this equation, it is known that asymptotic completeness in $L^2$ with initial data in $\Sigma$ holds and the wave operator is well defined on $\Sigma$. We show that there exists $0<\beta <p$ such that the wave operator and the data-to-scattering-state map do not admit extensions to maps $L^2\to L^2$ of class $C^{1+\beta }$ near the origin. This constitutes a mild form of ill-posedness for the scattering problem in the $L^2$ topology.more » « less
-
This paper considers the attenuated Westervelt equation in pressure formulation. The attenuation is by various models proposed in the literature and characterised by the inclusion of non-local operators that give power law damping as opposed to the exponential of classical models. The goal is the inverse problem of recovering a spatially dependent coefficient in the equation, the parameter of nonlinearity κ ( x ) \kappa (x) , in what becomes a nonlinear hyperbolic equation with non-local terms. The overposed measured data is a time trace taken on a subset of the domain or its boundary. We shall show injectivity of the linearised map from κ \kappa to the overposed data and from this basis develop and analyse Newton-type schemes for its effective recovery.more » « less
-
We investigate the well-posedness in the generalized Hartree equation [Formula: see text], [Formula: see text], [Formula: see text], for low powers of nonlinearity, [Formula: see text]. We establish the local well-posedness for a class of data in weighted Sobolev spaces, following ideas of Cazenave and Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Comm. Contemp. Math. 19(2) (2017) 1650038. This crucially relies on the boundedness of the Riesz transform in weighted Lebesgue spaces. As a consequence, we obtain a class of data that exists globally, moreover, scatters in positive time. Furthermore, in the focusing case in the [Formula: see text]-supercritical setting we obtain a subset of locally well-posed data with positive energy, which blows up in finite time.more » « less
-
Abstract We establish local well‐posedness in the sense of Hadamard for a certain third‐order nonlinear Schrödinger equation with a multiterm linear part and a general power nonlinearity, known as higher‐order nonlinear Schrödinger equation, formulated on the half‐line . We consider the scenario of associated coefficients such that only one boundary condition is required and hence assume a general nonhomogeneous boundary datum of Dirichlet type at . Our functional framework centers around fractional Sobolev spaces with respect to the spatial variable. We treat both high regularity () and low regularity () solutions: in the former setting, the relevant nonlinearity can be handled via the Banach algebra property; in the latter setting, however, this is no longer the case and, instead, delicate Strichartz estimates must be established. This task is especially challenging in the framework of nonhomogeneous initial‐boundary value problems, as it involves proving boundary‐type Strichartz estimates that are not common in the study of Cauchy (initial value) problems. The linear analysis, which forms the core of this work, crucially relies on a weak solution formulation defined through the novel solution formulae obtained via the Fokas method (also known as the unified transform) for the associated forced linear problem. In this connection, we note that the higher‐order Schrödinger equation comes with an increased level of difficulty due to the presence of more than one spatial derivatives in the linear part of the equation. This feature manifests itself via several complications throughout the analysis, including (i) analyticity issues related to complex square roots, which require careful treatment of branch cuts and deformations of integration contours; (ii) singularities that emerge upon changes of variables in the Fourier analysis arguments; and (iii) complicated oscillatory kernels in the weak solution formula for the linear initial‐boundary value problem, which require a subtle analysis of the dispersion in terms of the regularity of the boundary data. The present work provides a first, complete treatment via the Fokas method of a nonhomogeneous initial‐boundary value problem for a partial differential equation associated with a multiterm linear differential operator.
-
Abstract Models of nonlinear quantum computation based on deterministic positive trace‐preserving (PTP) channels and evolution equations are investigated. The models are defined in any finite Hilbert space, but the main results are for dimension . For every normalizable linear or nonlinear positive map ϕ on bounded linear operators
X , there is an associated normalized PTP channel . Normalized PTP channels include unitary mean field theories, such as the Gross–Pitaevskii equation for interacting bosons, as well as models of linear and nonlinear dissipation. They classify into four types, yielding three distinct forms of nonlinearity whose computational power are explored. In the qubit case, these channels support Bloch ball torsion and other distortions studied previously, where it has been shown that such nonlinearity can be used to increase the separation between a pair of close qubit states, suggesting an exponential speedup for state discrimination. Building on this idea, the authors argue that this operation can be made robust to noise by using dissipation to induce a bifurcation to a novel phase where a pair of attracting fixed points create an intrinsically fault‐tolerant nonlinear state discriminator.