The field of low-temperature plasmas (LTPs) excels by virtue of its broad intellectual diversity, interdisciplinarity and range of applications. This great diversity also challenges researchers in communicating the outcomes of their investigations, as common practices and expectations for reporting vary widely in the many disciplines that either fall under the LTP umbrella or interact closely with LTP topics. These challenges encompass comparing measurements made in different laboratories, exchanging and sharing computer models, enabling reproducibility in experiments and computations using traceable and transparent methods and data, establishing metrics for reliability, and in translating fundamental findings to practice. In this paper, we address these challenges from the perspective of LTP standards for measurements, diagnostics, computations, reporting and plasma sources. This discussion on standards, or recommended best practices, and in some cases suggestions for standards or best practices, has the goal of improving communication, reproducibility and transparency within the LTP field and fields allied with LTPs. This discussion also acknowledges that standards and best practices, either recommended or at some point enforced, are ultimately a matter of judgment. These standards and recommended practices should not limit innovation nor prevent research breakthroughs from having real-time impact. Ultimately, the goal of our research community is to advance the entire LTP field and the many applications it touches through a shared set of expectations.
- PAR ID:
- 10345355
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Journal of Physics D: Applied Physics
- Volume:
- 55
- Issue:
- 37
- ISSN:
- 0022-3727
- Page Range / eLocation ID:
- 373001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Plasma-based accelerators use the strong electromagnetic fields that can be supported by plasmas to accelerate charged particles to high energies. Accelerating field structures in plasma can be generated by powerful laser pulses or charged particle beams. This research field has recently transitioned from involving a few small-scale efforts to the development of national and international networks of scientists supported by substantial investment in large-scale research infrastructure. In this New Journal of Physics 2020 Plasma Accelerator Roadmap, perspectives from experts in this field provide a summary overview of the field and insights into the research needs and developments for an international audience of scientists, including graduate students and researchers entering the field.
-
Abstract Women have made significant contributions to applied physics research and development, and their participation is vital to continued progress. Recognizing these contributions is important for encouraging increased involvement and creating an equitable environment in which women can thrive. This Roadmap on Women in Applied Physics, written by women scientists and engineers, is intended to celebrate women’s accomplishments, highlight established and early career researchers enlarging the boundaries in their respective fields, and promote increased visibility for the impact women have on applied physics research. Perspectives cover the topics of plasma materials processing and propulsion, super-resolution microscopy, bioelectronics, spintronics, superconducting quantum interference device technology, quantum materials, 2D materials, catalysis and surface science, fuel cells, batteries, photovoltaics, neuromorphic computing and devices, nanophotonics and nanophononics, and nanomagnetism. Our intent is to inspire more women to enter these fields and encourage an atmosphere of inclusion within the scientific community.more » « less
-
null (Ed.)A particular challenge for low temperature plasma (LTP) research is the diversity of parameter space and conditions. For plasma systems where the densities are not low, the kinetic theory is time-consuming and becomes unrealistic. In this regime, the particle-in-Cell (PIC) method is appropriate where the evolution of a particle system at every time step consists of an Eulerian stage and a Lagrangian stage. The PIC method can deal with complex geometries and large distortions in the field. The PIC solver, Starfish, is a two-dimensional plasma and gas simulation code operating on structured 2D/axisymmetric Cartesian or body fitted stretched meshes. The purpose of this study is to use the Starfish Plasma Simulation Code for numerical simulations of plasma interfaces. Specifically, two applications are considered: 1) the modeling of a large area (30 cm x 30 cm) microwave plasma chemical vapor deposition system, and 2) the understanding of LTP treatment on surface modification of polycaprolactone pellets and thermal properties of extruded filaments. With the exact geometries and experimental results being provided, numerical simulations of these two applications are ongoing.more » « less
-
Abstract The future of complex plasma research under microgravity condition, in particular on the International Space Station ISS, is discussed. First, the importance of this research and the benefit of microgravity investigations are summarized. Next, the key knowledge gaps, which could be topics of future microgravity research are identified. Here not only fundamental aspects are proposed but also important applications for lunar exploration as well as artificial intelligence technology are discussed. Finally, short, middle and long-term recommendations for complex plasma research under microgravity are given.