skip to main content


Search for: All records

Award ID contains: 1902892

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We consider the evolution of phylogenetic gene trees along phylogenetic species networks, according to the network multispecies coalescent process, and introduce a new network coalescent model with correlated inheritance of gene flow. This model generalizes two traditional versions of the network coalescent: with independent or common inheritance. At each reticulation, multiple lineages of a given locus are inherited from parental populations chosen at random, either independently across lineages or with positive correlation according to a Dirichlet process. This process may account for locus-specific probabilities of inheritance, for example. We implemented the simulation of gene trees under these network coalescent models in the Julia package PhyloCoalSimulations, which depends on PhyloNetworks and its powerful network manipulation tools. Input species phylogenies can be read in extended Newick format, either in numbers of generations or in coalescent units. Simulated gene trees can be written in Newick format, and in a way that preserves information about their embedding within the species network. This embedding can be used for downstream purposes, such as to simulate species-specific processes like rate variation across species, or for other scenarios as illustrated in this note. This package should be useful for simulation studies and simulation-based inference methods. The software is available open source with documentation and a tutorial at https://github.com/cecileane/PhyloCoalSimulations.jl.

     
    more » « less
  2. Tang, H. (Ed.)
    Rooted species trees are used in several downstream applications of phylogenetics. Most species tree estimation methods produce unrooted trees and additional methods are then used to root these unrooted trees. Recently, Quintet Rooting (QR) (Tabatabaee et al., ISMB and Bioinformatics 2022), a polynomial-time method for rooting an unrooted species tree given unrooted gene trees under the multispecies coalescent, was introduced. QR, which is based on a proof of identifiability of rooted 5-taxon trees in the presence of incomplete lineage sorting, was shown to have good accuracy, improving over other methods for rooting species trees when incomplete lineage sorting was the only cause of gene tree discordance, except when gene tree estimation error was very high. However, the statistical consistency of QR was left as an open question. Here, we present QR-STAR, a polynomial-time variant of QR that has an additional step for determining the rooted shape of each quintet tree. We prove that QR-STAR is statistically consistent under the multispecies coalescent model, and our simulation study shows that QR-STAR matches or improves on the accuracy of QR. QR-STAR is available in open source form at https://github.com/ytabatabaee/Quintet-Rooting. 
    more » « less
  3. Pe'er, I. (Ed.)
    We consider species tree estimation from multiple loci subject to intralocus recombination. We focus on 𝑅∗, a summary coalescent-based method using rooted triplets. We demonstrate analytically that intralocus recombination gives rise to an inconsistency zone, in which correct inference is not assured even in the limit of infinite amount of data. In addition, we validate and characterize this inconsistency zone through a simulation study that suggests that differential rates of recombination between closely related taxa can amplify the effect of incomplete lineage sorting and contribute to inconsistency. 
    more » « less
  4. Russell, Schwartz (Ed.)
    Abstract Motivation With growing genome-wide molecular datasets from next-generation sequencing, phylogenetic networks can be estimated using a variety of approaches. These phylogenetic networks include events like hybridization, gene flow or horizontal gene transfer explicitly. However, the most accurate network inference methods are computationally heavy. Methods that scale to larger datasets do not calculate a full likelihood, such that traditional likelihood-based tools for model selection are not applicable to decide how many past hybridization events best fit the data. We propose here a goodness-of-fit test to quantify the fit between data observed from genome-wide multi-locus data, and patterns expected under the multi-species coalescent model on a candidate phylogenetic network. Results We identified weaknesses in the previously proposed TICR test, and proposed corrections. The performance of our new test was validated by simulations on real-world phylogenetic networks. Our test provides one of the first rigorous tools for model selection, to select the adequate network complexity for the data at hand. The test can also work for identifying poorly inferred areas on a network. Availability and implementation Software for the goodness-of-fit test is available as a Julia package at https://github.com/cecileane/QuartetNetworkGoodnessFit.jl. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less