skip to main content


Search for: All records

Award ID contains: 1903188

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A cobalt oxide (Co3O4)-decorated silicon carbide (SiC) nano-tree array (denoted as Co3O4/SiC NTA) electrode is synthesized, and it is investigated for use in micro-supercapacitor applications. Firstly, the well-standing SiC nanowires (NWs) are prepared by nickel (Ni)-catalyzed chemical vapor deposition (CVD) method, and then the thin layer of Co3O4 and the hierarchical Co3O4 nano-flower-clusters are, respectively, fabricated on the side-walls and the top side of the SiC NWs via electrodeposition. The deposition of Co3O4 on the SiC NWs benefits the charge transfer at the electrode/aqueous electrolyte interface due to its extremely hydrophilic surface characteristic after Co3O4 decoration. Furthermore, the Co3O4/SiC NTA electrode provides a directional charge transport route along the length of SiC nanowires owing to their well-standing architecture. By using the Co3O4/SiC NTA electrode for micro-supercapacitor application, the areal capacitance obtained from cyclic voltammetry measurement reaches 845 mF cm−2 at a 10 mV s−1 scan rate. Finally, the capacitance durability is also evaluated by the cycling test of cyclic voltammetry at a high scan rate of 150 mV s−1 for 2000 cycles, exhibiting excellent stability. 
    more » « less
  2. null (Ed.)
  3. Metal-organic frameworks (MOFs) are highly designable porous materials and are recognized for their exceptional selectivity as chemical sensors. However, they are not always suitable for incorporation with existing sensing platforms, especially sensing modes that rely on electronic changes in the sensing material (e.g., work-function response or conductometric response). One way that MOFs can be utilized is by growing them as a porous membrane on a sensing layer and using the MOF to affect the electronic structure of the sensing layer. In this paper, a proof-of-concept for electronic modulation with MOFs is demonstrated. A PdO nanoparticle sensing layer on a chemical-sensitive field-effect-transistor is made more sensitive to a reducing gas, hydrogen, and less sensitive to oxidizng molecules, like H2S and NO2, by growing a layer of the MOF “ZIF-8” over the nanoparticles. The proposed mechanism is supported by X-ray photoelectron spectroscopy showing that the ZIF-8 membrane partially reduces the PdO sensing layer.

     
    more » « less