skip to main content


Title: Cobalt Oxide-Decorated Silicon Carbide Nano-Tree Array Electrode for Micro-Supercapacitor Application
A cobalt oxide (Co3O4)-decorated silicon carbide (SiC) nano-tree array (denoted as Co3O4/SiC NTA) electrode is synthesized, and it is investigated for use in micro-supercapacitor applications. Firstly, the well-standing SiC nanowires (NWs) are prepared by nickel (Ni)-catalyzed chemical vapor deposition (CVD) method, and then the thin layer of Co3O4 and the hierarchical Co3O4 nano-flower-clusters are, respectively, fabricated on the side-walls and the top side of the SiC NWs via electrodeposition. The deposition of Co3O4 on the SiC NWs benefits the charge transfer at the electrode/aqueous electrolyte interface due to its extremely hydrophilic surface characteristic after Co3O4 decoration. Furthermore, the Co3O4/SiC NTA electrode provides a directional charge transport route along the length of SiC nanowires owing to their well-standing architecture. By using the Co3O4/SiC NTA electrode for micro-supercapacitor application, the areal capacitance obtained from cyclic voltammetry measurement reaches 845 mF cm−2 at a 10 mV s−1 scan rate. Finally, the capacitance durability is also evaluated by the cycling test of cyclic voltammetry at a high scan rate of 150 mV s−1 for 2000 cycles, exhibiting excellent stability.  more » « less
Award ID(s):
1903188
NSF-PAR ID:
10326353
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Materials
Volume:
14
Issue:
16
ISSN:
1996-1944
Page Range / eLocation ID:
4514
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this work, an organic‐inorganic hybrid crystal, violet‐crystal (VC), was used to etch the nickel foam (NF) to fabricate a self‐standing electrode for the water oxidation reaction. The efficacy of VC‐assisted etching manifests the promising electrochemical performance towards the oxygen evolution reaction (OER), requiring only ~356 and ~376 mV overpotentials to reach 50 and 100 mA cm−2, respectively. The OER activity improvement is attributed to the collectively exhaustive effects arising from the incorporation of various elements in the NF, and the enhancement of active site density. Furthermore, the self‐standing electrode is robust, exhibiting a stable OER activity after 4,000 cyclic voltammetry cycles, and ~50 h. The anodic transfer coefficients (αa) show that the first electron transfer step is the rate‐determining step on the surface of NF‐VCs‐1.0 (NF etched by 1 g of VCs) electrode, while the chemical step involving dissociation following the first electron transfer step is identified as the rate‐limiting step in other electrodes. The lowest Tafel slope value observed in the NF‐VCs‐1.0 electrode indicates the high surface coverage of oxygen intermediates and more favorable OER reaction kinetics, as confirmed by high interfacial chemical capacitance and low charge transport/interfacial resistance. This work demonstrates the importance of VCs‐assisted etching of NF to activate the OER, and the ability to predict reaction kinetics and rate‐limiting step based onαavalues, which will open new avenues to identify advanced electrocatalysts for the water oxidation reaction.

     
    more » « less
  2. Abstract

    Stretchable supercapacitors have received increasing attention due to their broad applications in developing self‐powered stretchable electronics for wearable electronics, epidermal and implantable electronics, and biomedical devices that are capable of sustaining large deformations and conforming to complicated surfaces. In this work, a new type of highly stretchable and reliable supercapacitor is developed based on crumpled vertically aligned carbon nanotube (CNT) forests transferred onto an elastomer substrate with the assistance of a thermal annealing process in atmosphere environment. The crumpled CNT‐forest electrodes demonstrated good electrochemical performance and stability under either uniaxial (300%) or biaxial strains (300% × 300%) for thousands of stretching–relaxing cycles. The resulting supercapacitors can sustain a stretchability of 800% and possess a specific capacitance of 5 mF cm−2at the scan rate of 50 mV s−1. Furthermore, the crumpled CNT‐forest electrodes can be easily decorated with impregnated metal oxide nanoparticles to improve the specific capacitance and energy density of the supercapacitors. The approach developed in this work offers an alternative strategy for developing novel stretchable energy devices with vertically aligned nanotubes or nanowires for advanced applications in stretchable, flexible, and wearable electronic systems.

     
    more » « less
  3. High testosterone is associated with increased physical performance in sports due to its stimulation with body-muscle ratio, lean mass (muscle and bone), and bone density. Several studies show athletes with better explosive strength and sprint running performances in football, have a higher basal level of testosterone. The results suggest a relationship between testosterone production and the development of fast-twitch muscle fibers, endurance training, lean mass, resistance training in athletes as well as motivation for competition. Thus, monitoring testosterone levels is gaining attention to evaluate athletic performance of one's physical performance in sport, fitness, and bodybuilding as well as prevent health risk factors for low levels of testosterone. There have been attempts using optical, electrical and biochemical sensors to monitor testosterone but are difficult to reproduce in large quantities and suffer from limitations of sensitivity, and detection limits. This can be addressed using Molecularly Imprinted Polymers (MIPs) in a point of care (POC) system. Molecularly Imprinted Polymers (MIPs) are a synthetic polymer with cavities in the polymer matrix serve as recognition sites for a specific template molecule, which are detected using electrochemical amperometry. In this paper, we have used MIPs in conjunction with cyclic voltammetry, to produce a viable, ultrasensitive electrochemical sensor for the detection of testosterone from a human sweat sample. This combination of MIPs and cyclic voltammetry allows for a simple, low-cost, mass-producible, and non-invasive method for detecting testosterone in human males. This method is extremely simple and cheap, allowing for consistent measurement of Testosterone levels in humans and allows for the detection of Testosterone in a POC. In our work, a Screen-printed carbon electrode (SPCE) using polypropylene fabric was used as the base working electrode in a three-electrode system. The screen-printing technique was implemented to layer a carbon paste over both sides of the fabric and was air-dried for one hour at 75⁰C. The SPCE was immersed into an acetate buffer solution that contains a 2.0mM monomer called o-phenylenediamine and with a 0.1mM testosterone template. Electropolymerization was carried out with cyclic voltammetry from a range of 0V to 1.0V, at a scan rate of 50 mV/s, a sensitivity (A/V) of 1e-5A, and for a total of 30 cycles. The set concentration tested was 100-1600 ng/ml of testosterone. The electrochemical characterization will have a potential sweep of -1.2 V to 1.2 V, a scan rate of 0.05 (V/s), a sensitivity (A/V) of 1e-5A, and a singular cycle. The wearable biosensor showed a detection range for testosterone from 100ng to 1600ng, electrochemical results also showed a clear and measurable result with an R-square value of 0.9417 which proves the accuracy of the developed sensor. Although this is not the complete saturation point and theoretically maximum limit of 28,842ng/ml can be achieved although this was not tested. The detectable lowest concentration of testosterone was found to be ~100ng/ml, and it was noted that lower than 100ng gives a weaker signal, In conclusion a novel electrochemical sensor based on a molecularly imprinted polymer used as the extended gate of a field effect transistor was developed for the ultrasensitive detection of sweat Testosterone. This sensing technology paves the way for the low cost, label-free, and point of care detection which can be used for evaluating ang monitoring athletic performance. 
    more » « less
  4. Abstract

    Supercapacitors are beneficial as energy storage devices and can obtain high capacitance values greater than conventional capacitors and high power densities compared to batteries. However, in order to improve upon the overall cost, energy density, and charge-discharge rates, the electrode material of supercapacitors needs to be fine-tuned with an inexpensive, high conducting source. We prepared a Co(III) complex and polypyrrole (PPy) composite thin films (CoN4-PPy) that was electrochemically deposited on the surface of a glassy carbon working electrode. Cyclic voltammetry studies indicate the superior performance of CoN4-PPy in charge storage in acidic electrolyte compared to alkaline and organic solutions. The CoN4-PPy material generated the highest amount of specific capacitance (up to 721.9 F/g) followed by Co salt and PPy (Co-PPy) material and PPy alone. Cyclic performance studies showed the excellent electrochemical stability of the CoN4-PPy film in the acidic medium. Simply electrochemically depositing an inexpensive Co(III) complex with a high electrically conducting polymer of PPy delivered a superior electrode material for supercapacitor applications. Therefore, the results indicate that novel thin films derived from Co(III) metal complex and PPy can store a large amount of energy and maintain high stability over many cycles, revealing its excellent potential in supercapacitor devices.

     
    more » « less
  5. Synthesis of nitrogen doped mesoporous graphitic carbon spheres with dispersed metal oxide nanoparticles using a single temperature treatment step serves as one of the big challenges in materials research. To date only a few reports have been published on the soft-templating synthesis of mesoporous graphitic carbons. The preparation of graphitic carbons with dispersed Fe 2 O 3 using a single carbonization step at relatively low temperatures is yet to be explored. The first phase of this work shows the potential of graphitization of polyvinylpyrrolidine (PVP) stabilized cubic Prussian blue nanoparticles (CPB) in phenolic resin spheres to produce graphitic carbon spheres through a facile Stöber-like method. In the second phase, the Pluronic F127 soft template was used along with PVP stabilized Prussian blue nanoparticles (PB) in carbon spheres to generate mesopores and graphitic domains with uniformly dispersed Fe 2 O 3 nanoparticles in these spheres. Due to the presence of graphitic layers, doped N species and Fe 2 O 3 nanoparticles in the carbon matrix, the yielded carbon spheres feature a high surface area and magnetic properties. Moreover, these graphitic spheres exhibited excellent capacitive behavior with rectangular cyclic voltammetry (CV) profiles and large capacitance up to 247 F g −1 at 1 mV s −1 scan rate in 6 M KOH solution. 
    more » « less