skip to main content

Search for: All records

Award ID contains: 1905751

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The magnitude and temporal evolution of the quantum-state renormalization (QSR), or the energetic shifting of the quantum-confinement states caused by photoexcitation and changes in electron screening, were probed in transient absorption (TA) spectroscopy measurements of colloidal semiconductor nanoparticles. Experiments were performed on high- and lower-quality wurtzite CdTe quantum wires (QWs) with photoluminescence quantum yields of 8.8% and ∼0.2% using low-excitation fluences. The QSR shifts the spectral features to lower energies in both samples, with larger shifts measured in the high-quality QWs. The TA spectral features measured for both samples shift uniquely with time after photoexcitation, illustrating dynamic QSR that depends on the quantum-confinement states and on the states occupied by carriers. The higher fraction of carriers that reach the band-edge states in the high-quality QWs results in larger renormalization, with the energies of the band-edge states approaching the Stokes shift of the steady-state photoluminescence feature below the band-edge absorption energy. The intraband relaxation dynamics of charge carriers photoexcited in semiconductor nanoparticles was also characterized after accounting for contributions from QSR in the TA data. The intraband relaxation to the band-edge states was slower in the high-quality QWs than in the lower-quality QWs, likely due to the reduced number of trap states accessible. The contrasting relaxation time scales provide definitive evidence for a dependence of the photoluminescence efficiency on excitation energy. These studies reveal the complicated interplay between the energetics and relaxation mechanisms of carriers within semiconductor nanoparticles, even those with the same dimensionality. 
    more » « less
    Free, publicly-accessible full text available October 12, 2024
  2. Ligand-exchange reactions of wurtzite CdSe quantum platelets (QPs) and quantum belts (QBs) with methyl viologen (MV2+) and the derivative ligands MV2+(CH2)nNH2 (n = 2, 4, or 6) are investigated. The QP and QB photoluminescence is quenched after partial ligand exchange. Spectroscopic and compositional data establish that this initial ligand substitution occurs on the thin QP and QB edges. The MV2+(CH2)nNH2 ligands are shown to be more-efficient photoluminescence quenchers than the parent MV2+ ion. The ligands on the thin, nonpolar, long-edge facets quench the photoluminescence via the trapping of excitons. Transient absorption experiments indicate the excitons dissociate, and electron transfer to the MV2+(CH2)nNH2 ligands only occurs at the polar, short-edge facets of the wurtzite CdSe QPs and QBs. Electron transfer to the MV2+(CH2)nNH2 ligands occurs within 100 fs when exciting at the band edge and on longer time scales, due to intraband relaxation, when exciting at higher energies. 
    more » « less
    Free, publicly-accessible full text available September 21, 2024
  3. Wurtzite CdSe quantum belts with L-type n-octylamine, L-type ammonia, or Z-type Cd(oleate)2 ligands are exchanged for several metal-dithiocarbamate ligands [M(S2CNR1R2)2]: Cd(S2CNPhMe)2, Cd(S2CNEt2)2, Zn(S2CNPhMe)2, and Zn(S2CNEt2)2. Successful ligand exchange with all M(S2CNR1R2)2 compounds occurs from {CdSe[Cd(oleate)2]0.19} quantum belts (QBs), which induce similar spectral shifts in the absorption spectra of the ligand-exchanged QBs. Spectroscopic data, experimentally determined lattice strains, and ligand exchanges with [Na][Et2NCS2] and [NH4][MePhNCS2] establish that the [M(S2CNR1R2)2] ligands bind as bound-ion-paired X-type ligands with (S2CNR1R2)− groups ligated directly to the QB surfaces and [M(S2CNR1R2)]+ groups serving as the charge-balancing ion-paired countercations. The X-type dithiocarbamate ligands do not impart any special electronic effects to the CdSe QBs. 
    more » « less
  4. null (Ed.)