Wurtzite CdSe quantum belts with L-type n-octylamine, L-type ammonia, or Z-type Cd(oleate)2 ligands are exchanged for several metal-dithiocarbamate ligands [M(S2CNR1R2)2]: Cd(S2CNPhMe)2, Cd(S2CNEt2)2, Zn(S2CNPhMe)2, and Zn(S2CNEt2)2. Successful ligand exchange with all M(S2CNR1R2)2 compounds occurs from {CdSe[Cd(oleate)2]0.19} quantum belts (QBs), which induce similar spectral shifts in the absorption spectra of the ligand-exchanged QBs. Spectroscopic data, experimentally determined lattice strains, and ligand exchanges with [Na][Et2NCS2] and [NH4][MePhNCS2] establish that the [M(S2CNR1R2)2] ligands bind as bound-ion-paired X-type ligands with (S2CNR1R2)− groups ligated directly to the QB surfaces and [M(S2CNR1R2)]+ groups serving as the charge-balancing ion-paired countercations. The X-type dithiocarbamate ligands do not impart any special electronic effects to the CdSe QBs.
more »
« less
Facet-Specific Electron Transfer in Pseudo-Two-Dimensional Wurtzite Cadmium Selenide Nanocrystals
Ligand-exchange reactions of wurtzite CdSe quantum platelets (QPs) and quantum belts (QBs) with methyl viologen (MV2+) and the derivative ligands MV2+(CH2)nNH2 (n = 2, 4, or 6) are investigated. The QP and QB photoluminescence is quenched after partial ligand exchange. Spectroscopic and compositional data establish that this initial ligand substitution occurs on the thin QP and QB edges. The MV2+(CH2)nNH2 ligands are shown to be more-efficient photoluminescence quenchers than the parent MV2+ ion. The ligands on the thin, nonpolar, long-edge facets quench the photoluminescence via the trapping of excitons. Transient absorption experiments indicate the excitons dissociate, and electron transfer to the MV2+(CH2)nNH2 ligands only occurs at the polar, short-edge facets of the wurtzite CdSe QPs and QBs. Electron transfer to the MV2+(CH2)nNH2 ligands occurs within 100 fs when exciting at the band edge and on longer time scales, due to intraband relaxation, when exciting at higher energies.
more »
« less
- Award ID(s):
- 1905751
- PAR ID:
- 10484536
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry C
- Volume:
- 127
- Issue:
- 37
- ISSN:
- 1932-7447
- Page Range / eLocation ID:
- 18506 to 18517
- Subject(s) / Keyword(s):
- Cadmium selenide, Charge transfer, Ligands, Ligation, Quenching
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The quasiparticles (QPs) or quasiholes (QHs) of fractional quantum Hall states have been predicted to obey fractional braid statistics, which refers to the Berry phase (in addition to the usual Aharonov-Bohm phase) associated with an exchange of two QPs or two QHs or, equivalently, to half of the phase associated with a QP or QH going around another. Certain phase slips in interference experiments in the fractional quantum Hall regime have been attributed to fractional braid statistics, where the interference probes the Berry phase associated with a closed path which has segments along the edges of the sample as well as through the bulk (where tunneling occurs). Noting that QPs and QHs with sharply quantized fractional charge and fractional statistics do not exist at the edge of a fractional quantum Hall state due to the absence of a gap there, we provide arguments that the existence of composite fermions at the edge is sufficient for understanding the primary experimental observations; unlike QPs and QHs, composite fermions are known to be well defined in compressible states without a gap. We further propose that transport through a closed tunneling loop contained entirely in the bulk can, in principle, allow measurement of the braid statistics in a way that the braiding object explicitly has a fractionally quantized charge over the entire loop. Optimal parameters for this experimental geometry are determined from quantitative calculations.more » « less
-
Spatial confinement of charge carriers in nanosize semiconductor quantum dots (QDs) results in highly tunable, size-dependent optoelectronic properties that can be utilized in various commercial applications. Although in such nanostructures, non-stoichiometry is frequently encountered using conventional synthesis techniques, it is not often addressed or considered. Here, we perform ab initio molecular dynamics simulations on non-stoichiometric CdSe clusters to study the phonon-mediated charge carrier relaxation dynamics. We model cation-rich and anion-rich QDs passivated with monocharged neutralizing ligands of different sizes. Our studies confirm the presence of localized trap states at the valence band edge in only anion-rich QDs due to the presence of undercoordinated exposed surface Se atoms. Noteworthily, these localized states disappear when using bulkier ligands. Calculations reveal that the size of the ligands controls the crystal vibrations and electron–phonon coupling, while ligand coordination number affects the electronic structure. For a particular non-stoichiometric CdSe QD, a change of a ligand can either increase or decrease the total electron relaxation time compared to that of stoichiometric QDs. Our results emphasize the importance of ligand engineering in non-stoichiometric QDs for photoinduced dynamics and guide future work for the implementation of improved materials for optoelectronic devices.more » « less
-
Neutral metal salts coordinate to the surfaces of colloidal semiconductor nanocrystals (NCs) by acting as Lewis acid acceptors for the NC surface anions. This ligand coordination has been associated with increased emission due to passivation of surface hole traps. Here, variation of the anionic ligands of metal salts is used to study anion effects on metal complex Lewis acidity and surface coordination at CdSe and InP NCs. To resolve dynamic ligand exchange processes, the tetracarbonylcobaltate anion, [Co(CO)4]–, is used as a monoanionic ligand for which IR spectroscopy can readily identify displacement of neutral M[Co(CO)4]x species (M = Cd or In; x = 2 or 3, respectively) upon addition of neutral donor ligands. Notably, although Cd[Co(CO)4]2 is more Lewis acidic than cadmium oleate, the former is more readily displaced from the NC surfaces. Lewis acidity and X-type anion exchange are therefore factors to be considered when performing post-synthetic addition of metal salts for NC photoluminescence emission enhancement.more » « less
-
Morkoç, Hadis; Fujioka, Hiroshi; Schwarz, Ulrich T. (Ed.)Although AlGaN-based deep ultraviolet (UV) light-emitting diodes (LEDs) have been studied extensively, their quantum efficiency and optical output power still remain extremely low compared to the InGaN-based visible color LEDs. Electron leakage has been identified as one of the most possible reasons for the low internal quantum efficiency (IQE) in AlGaN based UV LEDs. The integration of a p-doped AlGaN electron blocking layer (EBL) or/and increasing the conduction band barrier heights with prompt utilization of higher Al composition quantum barriers (QBs) in the LED could mitigate the electron leakage problem to an extent, but not completely. In this context, we introduce a promising approach to alleviate the electron overflow without using EBL by utilizing graded concave QBs instead of conventional QBs in AlGaN UV LEDs. Overall, the carrier transportation, confinement capability and radiative recombination are significantly improved. As a result, the IQE, and output power of the proposed concave QB LED were enhanced by ~25.4% and ~25.6% compared to the conventional LED for emission at ~254 nm, under 60 mA injection current.more » « less
An official website of the United States government

