Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Research about vection (illusory self-motion) has investigated a wide range of sensory cues and employed various methods and equipment, including use of virtual reality (VR). However, there is currently no research in the field of vection on the impact of floating in water while experiencing VR. Aquatic immersion presents a new and interesting method to potentially enhance vection by reducing conflicting sensory information that is usually experienced when standing or sitting on a stable surface. This study compares vection, visually induced motion sickness, and presence among participants experiencing VR while standing on the ground or floating in water. Results show that vection was significantly enhanced for the participants in the Water condition, whose judgments of self-displacement were larger than those of participants in the Ground condition. No differences in visually induced motion sickness or presence were found between conditions. We discuss the implication of this new type of VR experience for the fields of VR and vection while also discussing future research questions that emerge from our findings.more » « less
-
null (Ed.)As coastal communities around the globe contend with the impacts of climate change including coastal hazards such as sea level rise and more frequent coastal storms, educating stakeholders and the general public has become essential in order to adapt to and mitigate these risks. Communicating SLR and other coastal risks is not a simple task. First, SLR is a phenomenon that is abstract as it is physically distant from many people; second, the rise of the sea is a slow and temporally distant process which makes this issue psychologically distant from our everyday life. Virtual reality (VR) simulations may offer a way to overcome some of these challenges, enabling users to learn key principles related to climate change and coastal risks in an immersive, interactive, and safe learning environment. This article first presents the literature on environmental issues communication and engagement; second, it introduces VR technology evolution and expands the discussion on VR application for environmental literacy. We then provide an account of how three coastal communities have used VR experiences developed by multidisciplinary teams—including residents—to support communication and community outreach focused on SLR and discuss their implications.more » « less
-
This study aimed to compare the effects of immersive virtual reality (IVR) videos and 2D educational videos on cognitive (i.e. conceptual knowledge) and non-cognitive (i.e. self-efficacy) learning outcomes. Fifty-three students from an all-girls middle school learned about humans’ impact on the ocean through either IVR videos, using a virtual reality (VR) headset, or through 2D videos, using a computer monitor. Results replicate previous findings suggesting that conceptual knowledge gains between IVR and desktop learning experiences is not significant. Also, results show that participants who watched IVR videos reported higher self-efficacy scores and expressed higher feelings of presence than participants who watched the same videos using a computer monitor. Finally, further analyses revealed that the feeling of presence mediated both cognitive and non-cognitive learning outcomes.more » « less
An official website of the United States government

Full Text Available