Cybersickness, or sickness induced by virtual reality (VR), negatively impacts the enjoyment and adoption of the technology. One method that has been used to reduce sickness is repeated exposure to VR, herein Cybersickness Abatement from Repeated Exposure (CARE). However, high sickness levels during repeated exposure may discourage some users from returning. Field of view (FOV) restriction reduces cybersickness by minimizing visual motion in the periphery, but also negatively affects the user's visual experience. This study explored whether CARE that occurs with FOV restriction generalizes to a full FOV experience. Participants played a VR game for up to 20 minutes. Those in the Repeated Exposure Condition played the same VR game on four separate days, experiencing FOV restriction during the first three days and no FOV restriction on the fourth day. Results indicated significant CARE with FOV restriction (Days 1-3). Further, cybersickness on Day 4, without FOV restriction, was significantly lower than that of participants in the Single Exposure Condition, who experienced the game without FOV restriction only on one day. The current findings show that significant CARE can occur while experiencing minimal cybersickness. Results are considered in the context of multiple theoretical explanations for CARE, including sensory rearrangement, adaptation, habituation, and postural control.
more »
« less
The effect of water immersion on vection in virtual reality
Abstract Research about vection (illusory self-motion) has investigated a wide range of sensory cues and employed various methods and equipment, including use of virtual reality (VR). However, there is currently no research in the field of vection on the impact of floating in water while experiencing VR. Aquatic immersion presents a new and interesting method to potentially enhance vection by reducing conflicting sensory information that is usually experienced when standing or sitting on a stable surface. This study compares vection, visually induced motion sickness, and presence among participants experiencing VR while standing on the ground or floating in water. Results show that vection was significantly enhanced for the participants in the Water condition, whose judgments of self-displacement were larger than those of participants in the Ground condition. No differences in visually induced motion sickness or presence were found between conditions. We discuss the implication of this new type of VR experience for the fields of VR and vection while also discussing future research questions that emerge from our findings.
more »
« less
- PAR ID:
- 10209776
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Redirected and amplified head movements have the potential to provide more natural interaction with virtual environments (VEs) than using controller-based input, which causes large discrepancies between visual and vestibular self-motion cues and leads to increased VR sickness. However, such amplified head movements may also exacerbate VR sickness symptoms over no amplification. Several general methods have been introduced to reduce VR sickness for controller-based input inside a VE, including a popular vignetting method that gradually reduces the field of view. In this paper, we investigate the use of vignetting to reduce VR sickness when using amplified head rotations instead of controllerbased input. We also investigate whether the induced VR sickness is a result of the user’s head acceleration or velocity by introducing two different modes of vignetting, one triggered by acceleration and the other by velocity. Our dependent measures were pre and post VR sickness questionnaires as well as estimated discomfort levels that were assessed each minute of the experiment. Our results show interesting effects between a baseline condition without vignetting, as well as the two vignetting methods, generally indicating that the vignetting methods did not succeed in reducing VR sickness for most of the participants and, instead, lead to a significant increase. We discuss the results and potential explanations of our findings.more » « less
-
VR sickness is a major concern for many users as VR continues its expansion towards widespread everyday use. VR sickness is thought to arise, at least in part, due to the user’s intolerance of conflict between the visually simulated self-motion and actual physical movement. Many mitigation strategies involve consistently modifying the visual stimulus to reduce its impact on the user, but this individualized approach can have drawbacks in terms of complexity of implementation and non-uniformity of user experience. This study presents a novel alternative approach that involves training the user to better tolerate the adverse stimulus by tapping into natural adaptive perceptual mechanisms. In this study, we recruited users with limited VR experience that reported susceptibility to VR sickness. Baseline sickness was measured as participants navigated a rich and naturalistic visual environment. Then, on successive days, participants were exposed to optic flow in a more abstract visual environment, and strength of the optic flow was successively increased by increasing the visual contrast of the scene, because strength of optic flow and the resulting vection are thought to be major causes of VR sickness. Sickness measures decreased on successive days, indicating that adaptation was successful. On the final day, participants were again exposed to the rich and naturalistic visual environment, and the adaptation was maintained, demonstrating that it is possible for adaptation to transfer from more abstract to richer and more naturalistic environments. These results demonstrate that gradual adaptation to increasing optic flow strength in well-controlled, abstract environments allows users to gradually reduce their susceptibility to sickness, thereby increasing VR accessibility for those prone to sickness.more » « less
-
Previous research has shown that motion sickness associated with virtual vehicles is more common among passengers than among drivers. Separately, other studies have shown that postural precursors of motion sickness during virtual driving differ as a function of prior experience driving physical vehicles. We investigated the intersection of those prior effects: We asked whether decades of physical driving experience 1) would influence motion sickness among passengers in a virtual vehicle, and 2) would influence postural precursors of motion sickness among passengers in a virtual vehicle. In our study, middle-aged adults were exposed to a virtual vehicle as passengers. Some participants (Physical Drivers) had decades of experience driving physical automobiles, while others (Physical Non-Drivers) had rarely or never driven a physical vehicle. First, we measured head and torso movement as standing participants performed simple visual tasks. Then, each participant watched a recording of the motion of a virtual vehicle, which induced motion sickness in some participants. Afterward, neither the incidence nor the severity of motion sickness differed between Physical Drivers and Physical Non-Drivers. Our analysis of pre-exposure standing body sway revealed postural precursors of motion sickness in measures of the spatial magnitude and temporal dynamics of movement. In statistically significant interactions, these precursors (Well vs. Sick) differed as a function of physical driving experience (Physical Drivers vs. Physical Non-Drivers). Overall, our results indicate that, among virtual passengers, long-term real-world driving experience influenced the postural precursors of motion sickness, but not the incidence or severity of motion sickness. We discuss these results in terms of relationships between perception and motor control in theories of motion sickness etiology.more » « less
-
Guidelines on Successfully Porting Non-Immersive Games to Virtual Reality: A Case Study in MinecraftVirtual reality games have grown rapidly in popularity since the first consumer VR head-mounted displays were released in 2016, however comparatively little research has explored how this new medium impacts the experience of players. In this paper, we present a study exploring how user experience changes when playing Minecraft on the desktop and in immersive virtual reality. Fourteen players completed six 45 minute sessions, three played on the desktop and three in VR. The Gaming Experience Questionnaire, the i-Group presence questionnaire, and the Simulator Sickness Questionnaire were administered after each session, and players were interviewed at the end of the experiment. Participants strongly preferred playing Minecraft in VR, despite frustrations with using teleporation as a travel technique and feelings of simulator sickness. Players enjoyed using motion controls, but still continued to use indirect input under certain circumstances. This did not appear to negatively impact feelings of presence. We conclude with four lessons for game developers interested in porting their games to virtual reality.more » « less