Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We introduce the firstexactroot parity counter for continuous collision detection (CCD). That is, our algorithm computes the parity (even or odd) of the number of roots of the cubic polynomial arising from a CCD query. We note that the parity is unable to differentiate between zero (no collisions) and the rare case of two roots (collisions). Our method does not have numerical parameters to tune, has a performance comparable to efficient approximate algorithms, and is exact. We test our approach on a large collection of synthetic tests and real simulations, and we demonstrate that it can be easily integrated into existing simulators.more » « less
-
We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve ODE- and PDE-constrained optimization problems on scenes with complex geometry. It supports static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code. We implement our approach on top of the open-source PolyFEM library and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and physical validations.more » « less
-
We present a numerically robust algorithm for computing the constrained Delaunay tetrahedrization (CDT) of a piecewise-linear complex, which has a 100% success rate on the 4408 valid models in the Thingi10k dataset. We build on the underlying theory of the well-known tetgen software, but use a floating-point implementation based on indirect geometric predicates to implicitly represent Steiner points: this new approach dramatically simplifies the implementation, removing the need for ad-hoc tolerances in geometric operations. Our approach leads to a robust and parameter-free implementation, with an empirically manageable number of added Steiner points. Furthermore, our algorithm addresses a major gap in tetgen's theory which may lead to algorithmic failure on valid models, even when assuming perfect precision in the calculations. Our output tetrahedrization conforms with the input geometry without approximations. We can further round our output to floating-point coordinates for downstream applications, which almost always results in valid floating-point meshes unless the input triangulation is very close to being degenerate.more » « less
-
We propose In-Timestep Remeshing, a fully coupled, adaptive meshing algorithm for contacting elastodynamics where remeshing steps are tightly integrated, implicitly, within the timestep solve. Our algorithm refines and coarsens the domain automatically by measuring physical energy changes within each ongoing timestep solve. This provides consistent, degree-of-freedom-efficient, productive remeshing that, by construction, is physics-aware and so avoids the errors, over-refinements, artifacts, per-example hand-tuning, and instabilities commonly encountered when remeshing with timestepping methods. Our in-timestep computation then ensures that each simulation step's output is both a converged stable solution on the updated mesh and a temporally consistent trajectory with respect to the model and solution of the last timestep. At the same time, the output is guaranteed safe (intersection- and inversion-free) across all operations. We demonstrate applications across a wide range of extreme stress tests with challenging contacts, sharp geometries, extreme compressions, large timesteps, and wide material stiffness ranges - all scenarios well-appreciated to challenge existing remeshing methods.more » « less
-
We introduce a novel approach to describe mesh generation, mesh adaptation, and geometric modeling algorithms relying on changing mesh connectivity using a high-level abstraction. The main motivation is to enable easy customization and development of these algorithms via a declarative specification consisting of a set of per-element invariants, operation scheduling, and attribute transfer for each editing operation. We demonstrate that widely used algorithms editing surfaces and volumes can be compactly expressed with our abstraction, and their implementation within our framework is simple, automatically parallelizable on shared-memory architectures, and with guaranteed satisfaction of the prescribed invariants. These algorithms are readable and easy to customize for specific use cases. We introduce a software library implementing this abstraction and providing automatic shared-memory parallelization.more » « less
An official website of the United States government

Full Text Available