skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast and Exact Root Parity for Continuous Collision Detection
Abstract We introduce the firstexactroot parity counter for continuous collision detection (CCD). That is, our algorithm computes the parity (even or odd) of the number of roots of the cubic polynomial arising from a CCD query. We note that the parity is unable to differentiate between zero (no collisions) and the rare case of two roots (collisions). Our method does not have numerical parameters to tune, has a performance comparable to efficient approximate algorithms, and is exact. We test our approach on a large collection of synthetic tests and real simulations, and we demonstrate that it can be easily integrated into existing simulators.  more » « less
Award ID(s):
1908767 1835712 1652515
PAR ID:
10367780
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer Graphics Forum
Volume:
41
Issue:
2
ISSN:
0167-7055
Format(s):
Medium: X Size: p. 355-363
Size(s):
p. 355-363
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under theKreweras complementand nonnesting partitions under a Coxeter‐theoretically natural cyclic action we call theKroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support‐preserving, and is built using local rules depending on a new definition ofcharmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element , we recover one of the standard bijections between noncrossing and nonnesting partitions. 
    more » « less
  2. A<sc>bstract</sc> A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb−1of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of theWZ+ jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level. 
    more » « less
  3. Abstract Our understanding of the long‐term evolution of the Earth system is based on the assumption that terrestrial weathering rates should respond to, and hence help regulate, atmospheric CO2and climate. Increased terrestrial weathering requires increased carbonate accumulation in marine sediments, which in turn is expected to result in a long‐term deepening of the carbonate compensation depth (CCD). Here, we critically assess this long‐term relationship between climate and carbon cycling. We generate a record of marine deep‐sea carbonate abundance from selected late Paleocene through early Eocene time slices to reconstruct the position of the CCD. Although our data set allows for a modest CCD deepening, we find no statistically significant change in the CCD despite >3 °C global warming, highlighting the need for additional deep‐sea constraints on carbonate accumulation. Using an Earth system model, we show that the impact of warming and increased weathering on the CCD can be obscured by the opposing influences of ocean circulation patterns and sedimentary respiration of organic matter. From our data synthesis and modeling, we suggest that observations of warming, declining δ13C and a relatively stable CCD can be broadly reproduced by mid‐Paleogene increases in volcanic CO2outgassing and weathering. However, remaining data‐model discrepancies hint at missing processes in our model, most likely involving the preservation and burial of organic carbon. Our finding of a decoupling between the CCD and global marine carbonate burial rates means that considerable care is needed in attempting to use the CCD to directly gauge global carbonate burial rates and hence weathering rates. 
    more » « less
  4. Abstract Bethe equations, whose solutions determine exact eigenvalues and eigenstates of corresponding integrable Hamiltonians, are generally hard to solve. We implement a Variational Quantum Eigensolver approach to estimating Bethe roots of the spin-1/2 XXZ quantum spin chain, by using Bethe states as trial states, and treating Bethe roots as variational parameters. In numerical simulations of systems of size up to 6, we obtain estimates for Bethe roots corresponding to both ground states and excited states with up to 5 down-spins, for both the closed and open XXZ chains. This approach is not limited to real Bethe roots. 
    more » « less
  5. Abstract Glutaredoxins (GRXs) are small oxidoreductase enzymes that can reduce disulfide bonds in target proteins. The class III GRX gene family is unique to land plants, andArabidopsis thalianahas 21 class III GRXs, which remain largely uncharacterized. About 80% ofA. thalianaclass III GRXs are transcriptionally regulated by nitrate, and several recent studies have suggested roles for these GRXs in nitrogen signaling. Our objective was to functionally characterize two nitrate‐induced GRX genes,AtGRXS5andAtGRXS8, defining their roles in signaling and development in theA. thalianaroot. We demonstrated thatAtGRXS5andAtGRXS8are primarily expressed in root and shoot vasculature (phloem), and that the corresponding GRX proteins display nucleo‐cytosolic subcellular localization. Ectopic expression ofAtGRXS8in transgenic plants caused major alterations in root system architecture: Normal primary root development, but a near absence of lateral roots. RNA sequencing demonstrated that the roots ofAtGRXS8‐overexpressing plants show strongly reduced transcript abundance for many primary nitrate response genes, including the major high‐affinity nitrate transporters. Correspondingly, high‐affinity nitrate uptake and the transport of nitrate from roots to shoots are compromised inAtGRXS8‐overexpressing plants. Finally, we demonstrated that the AtGRXS8 protein can physically interact with the TGA1 and TGA4 transcription factors, which are central regulators of early transcriptional responses to nitrate inA. thalianaroots. Overall, these results suggest thatAtGRXS8acts to quench both transcriptional and developmental aspects of primary nitrate response, potentially by interfering with the activity of the TGA1 and TGA4 transcription factors. 
    more » « less