skip to main content

Search for: All records

Award ID contains: 1910880

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anomaly detection is a critical task in applications like preventing financial fraud, system malfunctions, and cybersecurity attacks. While previous research has offered a plethora of anomaly detection algorithms, effective anomaly detection remains challenging for users due to the tedious manual tuning process. Currently, model developers must determine which of these numerous algorithms is best suited for their particular domain and then must tune many parameters by hand to make the chosen algorithm perform well. This demonstration showcases AutoOD, the first unsupervised selftuning anomaly detection system which frees users from this tedious manual tuning process. AutoOD outperforms the best unsupervised anomaly detection methods it deploys, with its performance similar to those of supervised anomaly classification models, yet without requiring ground truth labels. Our easy-to-use visual interface allows users to gain insights into AutoOD’s self-tuning process and explore the underlying patterns within their datasets.
  2. Similarity search is the basis for many data analytics techniques, including k-nearest neighbor classification and outlier detection. Similarity search over large data sets relies on i) a distance metric learned from input examples and ii) an index to speed up search based on the learned distance metric. In interactive systems, input to guide the learning of the distance metric may be provided over time. As this new input changes the learned distance metric, a naive approach would adopt the costly process of re-indexing all items after each metric change. In this paper, we propose the first solution, called OASIS, to instantaneously adapt the index to conform to a changing distance metric without this prohibitive re-indexing process. To achieve this, we prove that locality-sensitive hashing (LSH) provides an invariance property, meaning that an LSH index built on the original distance metric is equally effective at supporting similarity search using an updated distance metric as long as the transform matrix learned for the new distance metric satisfies certain properties. This observation allows OASIS to avoid recomputing the index from scratch in most cases. Further, for the rare cases when an adaption of the LSH index is shown to be necessary, we designmore »an efficient incremental LSH update strategy that re-hashes only a small subset of the items in the index. In addition, we develop an efficient distance metric learning strategy that incrementally learns the new metric as inputs are received. Our experimental study using real world public datasets confirms the effectiveness of OASIS at improving the accuracy of various similarity search-based data analytics tasks by instantaneously adapting the distance metric and its associated index in tandem, while achieving an up to 3 orders of magnitude speedup over the state-of-art techniques.« less
  3. Modern Internet of Things ( IoT ) applications generate massive amounts of time-stamped data, much of it in the form of discrete, symbolic sequences. In this work, we present a new system called TOP that deTects Outlier Patterns from these sequences. To solve the fundamental limitation of existing pattern mining semantics that miss outlier patterns hidden inside of larger frequent patterns, TOP offers new pattern semantics based on contextual patterns that distinguish the independent occurrence of a pattern from its occurrence as part of its super-pattern. We present efficient algorithms for the mining of this new class of contextual patterns. In particular, in contrast to the bottom-up strategy for state-of-the-art pattern mining techniques, our top-down Reduce strategy piggy backs pattern detection with the detection of the context in which a pattern occurs. Our approach achieves linear time complexity in the length of the input sequence. Effective optimization techniques such as context-driven search space pruning and inverted index-based outlier pattern detection are also proposed to further speed up contextual pattern mining. Our experimental evaluation demonstrates the effectiveness of TOP at capturing meaningful outlier patterns in several real-world IoT use cases. We also demonstrate the efficiency of TOP, showing it to bemore »up to 2 orders of magnitude faster than adapting state-of-the-art mining to produce this new class of contextual outlier patterns, allowing us to scale outlier pattern mining to large sequence datasets.« less
  4. Local outlier techniques are known to be effective for detecting outliers in skewed data, where subsets of the data exhibit diverse distribution properties. However, existing methods are not well equipped to support modern high-velocity data streams due to the high complexity of the detection algorithms and their volatility to data updates. To tackle these shortcomings, we propose local outlier semantics that operate at an abstraction level by leveraging kernel density estimation (KDE) to effectively detect local outliers from streaming data. A strategy to continuously detect top-N KDE-based local outliers over streams is designed, called KELOS – the first linear time complexity streaming local outlier detection approach. The first innovation of KELOS is the abstract kernel center-based KDE (aKDE) strategy. aKDE accurately yet efficiently estimates the data density at each point – essential for local outlier detection. This is based on the observation that a cluster of points close to each other tend to have a similar influence on a target point’s density estimation when used as kernel centers. These points thus can be represented by one abstract kernel center. Next, the KELOS’s inlier pruning strategy early prunes points that have no chance to become top-N outliers. This empowers KELOS tomore »skip the computation of their data density and of the outlier status for every data point. Together aKDE and the inlier pruning strategy eliminate the performance bottleneck of streaming local outlier detection. The experimental evaluation demonstrates that KELOS is up to 6 orders of magnitude faster than existing solutions, while being highly effective in detecting local outliers from streaming data.« less
  5. The detection of abnormal moving objects over high-volume trajectory streams is critical for real-time applications ranging from military surveillance to transportation management. Yet this outlier detection problem, especially along both the spatial and temporal dimensions, remains largely unexplored. In this work, we propose a rich taxonomy of novel classes of neighbor-based trajectory outlier definitions that model the anomalous behavior of moving objects for a large range of real-time applications. Our theoretical analysis and empirical study on two real-world datasets—the Beijing Taxi trajectory data and the Ground Moving Target Indicator data stream—and one generated Moving Objects dataset demonstrate the effectiveness of our taxonomy in effectively capturing different types of abnormal moving objects. Furthermore, we propose a general strategy for efficiently detecting these new outlier classes called the minimal examination (MEX) framework. The MEX framework features three core optimization principles, which leverage spatiotemporal as well as the predictability properties of the neighbor evidence to minimize the detection costs. Based on this foundation, we design algorithms that detect the outliers based on these classes of new outlier semantics that successfully leverage our optimization principles. Our comprehensive experimental study demonstrates that our proposed MEX strategy drives the detection costs 100-fold down into the practicalmore »realm for applications that analyze high-volume trajectory streams in near real time.« less