skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supernova-driven Turbulent Metal Mixing in High-redshift Galactic Disks: Metallicity Fluctuations in the Interstellar Medium and its Imprints on Metal-poor Stars in the Milky Way
Abstract The extent to which turbulence mixes gas in the face of recurrent infusions of fresh metals by supernovae (SN) could help provide important constraints on the local star formation conditions. This includes predictions of the metallicity dispersion among metal-poor stars, which suggests that the interstellar medium was not very well mixed at these early times. The purpose of thisLetteris to help isolate, via a series of numerical experiments, some of the key processes that regulate turbulent mixing of SN elements in galactic disks. We study the gas interactions in small simulated patches of a galaxy disk with the goal of resolving the small-scale mixing effects of metals at parsec scales, which enables us to measure the turbulent diffusion coefficient in various galaxy environments. By investigating the statistics of variations ofαelements in these simulations, we are able to derive constraints not only on the allowed range of intrinsic yield variations in SN explosions but also on the star formation history of the Milky Way. We argue that the observed dispersion of [Mg/Fe] in metal-poor halo stars is compatible with the star-forming conditions expected in dwarf satellites or in an early low-star-forming Milky Way progenitor. In particular, metal variations in stars that have not been phase-mixed can be used to infer the star-forming conditions of disrupted dwarf satellites.  more » « less
Award ID(s):
1911206
PAR ID:
10371573
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
936
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L26
Size(s):
Article No. L26
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ultrafaint dwarf galaxy Reticulum II was enriched by a single rare and prolific r -process event. The r -process content of Reticulum II thus provides a unique opportunity to study metal mixing in a relic first galaxy. Using multi-object high-resolution spectroscopy with VLT/GIRAFFE and Magellan/M2FS, we identify 32 clear spectroscopic member stars and measure abundances of Mg, Ca, Fe, and Ba where possible. We find 72 − 12 + 10 % of the stars are r -process-enhanced, with a mean [ Ba / H ] = − 1.68 ± 0.07 and unresolved intrinsic dispersion σ [Ba/H] <0.20. The homogeneous r -process abundances imply that Ret II’s metals are well mixed by the time the r -enhanced stars form, which simulations have shown requires at least 100 Myr of metal mixing in between bursts of star formation to homogenize. This is the first direct evidence of bursty star formation in an ultrafaint dwarf galaxy. The homogeneous dilution prefers a prompt and high-yield r -process site, such as collapsar disk winds or prompt neutron star mergers. We also find evidence from [Ba/H] and [Mg/Ca] that the r -enhanced stars in Ret II formed in the absence of substantial pristine gas accretion, perhaps indicating that ≈70% of Ret II stars formed after reionization. 
    more » « less
  2. Abstract Metal-poor stars in the Milky Way (MW) halo display large star-to-star dispersion in theirr-process abundance relative to lighter elements. This suggests a chemically diverse and unmixed interstellar medium (ISM) in the early universe. This study aims to help shed light on the impact of turbulent mixing, driven by core-collapse supernovae (cc-SNe), on ther-process abundance dispersal in galactic disks. To this end, we conduct a series of simulations of small-scale galaxy patches which resolve metal-mixing mechanisms at parsec scales. Our setup includes cc-SNe feedback and enrichment fromr-process sources. We find that the relative rate of ther-process events to cc-SNe is directly imprinted on the shape of ther-process distribution in the ISM with more frequent events causing more centrally peaked distributions. We consider also the fraction of metals that is lost on galactic winds and find that cc-SNe are able to efficiently launch highly enriched winds, especially in smaller galaxy models. This result suggests that smaller systems, e.g., dwarf galaxies, may require higher levels of enrichment in order to achieve similar meanr-process abundances as MW-like progenitors systems. Finally, we are able to place novel constraints on the production rate ofr-process elements in the MW, 6 × 10 7 M yr 1 m ̇ rp 4.7 × 10 4 M yr 1 , imposed by accurately reproducing the mean and dispersion of [Eu/Fe] in metal-poor stars. Our results are consistent with independent estimates from alternate methods and constitute a significant reduction in the permitted parameter space. 
    more » « less
  3. Abstract We study the formation of stars with varying amounts of heavy elements synthesized by the rapid neutron-capture process (r-process) based on our detailed cosmological zoom-in simulation of a Milky Way–like galaxy with anN-body/smoothed particle hydrodynamics code,asura. Most stars with no overabundance inr-process elements, as well as the stronglyr-process-enhanced (RPE)r-II stars ([Eu/Fe] > +0.7), are formed in dwarf galaxies accreted by the Milky Way within the 6 Gyr after the Big Bang. In contrast, over half of the moderately enhancedr-I stars (+0.3 < [Eu/Fe] ≤ +0.7) are formed in the main in situ disk after 6 Gyr. Our results suggest that the fraction ofr-I andr-II stars formed in disrupted dwarf galaxies is larger the higher their [Eu/Fe] is. Accordingly, the most strongly enhancedr-III stars ([Eu/Fe] > +2.0) are formed in accreted components. These results suggest that non-r-process-enhanced stars andr-II stars are mainly formed in low-mass dwarf galaxies that hosted either none or a single neutron star merger, while ther-I stars tend to form in the well-mixed in situ disk. We compare our findings with high-resolution spectroscopic observations of RPE metal-poor stars in the halo and dwarf galaxies, including those collected by theR-Process Alliance. We conclude that observed [Eu/Fe] and [Eu/Mg] ratios can be employed in chemical tagging of the Milky Way’s accretion history. 
    more » « less
  4. Abstract The chemical abundances of Milky Way’s (MW's) satellites reflect their star formation histories (SFHs), yet, due to the difficulty of determining the ages of old stars, the SFHs of most satellites are poorly measured. Ongoing and upcoming surveys will obtain around 10 times more medium-resolution spectra for stars in satellites than are currently available. To correctly extract SFHs from large samples of chemical abundances, the relationship between chemical abundances and SFHs needs to be clarified. Here, we perform a high-resolution cosmological zoom-in simulation of a MW-like galaxy with detailed models of star formation, supernova (SN) feedback, and metal diffusion. We quantify SFHs, metallicity distribution functions, and theα-element (Mg, Ca, and Si) abundances in satellites of the host galaxy. We find that star formation in most simulated satellites is quenched before infalling to their host. Star formation episodes in simulated satellites are separated by a few hundred Myr owing to SN feedback; each star formation event produces groups of stars with similar [α/Fe] and [Fe/H]. We then perform a mock observation of the upcoming Subaru Prime Focus Spectrograph (PFS) observations. We find that Subaru PFS will be able to detect distinct groups of stars in [α/Fe] versus [Fe/H] space, produced by episodic star formation. This result means that episodic SFHs can be estimated from the chemical abundances of ≳1000 stars determined with medium-resolution spectroscopy. 
    more » « less
  5. Context.The C-19 stellar stream is the most metal-poor stream known to date. While its wth and velocity dispersion indicate a dwarf galaxy origin, its metallicity spread and abundance patterns are more similar to those of globular clusters (GCs). If it is indeed of GC origin, its extremely low metallicity ([Fe/H]=−3.4, estimated from giant stars) implies that these stellar systems can form out of gas that is as extremely poor in metals as this. Previously, only giant stream stars were observed spectroscopically, although the majority of stream stars are unevolved stars. Aims.We pushed the spectroscopic observations to the subgiant branch stars (G≈ 20) in order to consolate the chemical and dynamical properties of C-19. Methods.We used the high-efficiency spectrograph X-shooter fed by the ESO 8.2m VLT telescope to observe 15 candate subgiant C-19 members. The spectra were used to measure radial velocities and to determine chemical abundances using the MyGIsFOS code. Results.We developed a likelihood model that takes metallicity and radial velocities into account. We conclude that 12 stars are likely members of C-19, while 3 stars (S05, S12, and S13) are likely contaminants. When these 3 stars are excluded, our model implies a mean metallicity 〈[Fe/H]〉 = −3.1 ± 0.1, the mean radial velocity is 〈vr〉 = −192 ± 3km s−1, and the velocity dispersion is σvr= 5.9−5.9+3.6km s−1. This all agrees within errors with previous studies. The A(Mg) of a sample of 15 C-19 members, including 6 giant stars, shows a standard deviation of 0.44 dex, and the mean uncertainty on Mg is 0.25 dex. Conclusions.Our preferred interpretation of the current data is that C-19 is a disrupted GC. We cannot completely rule out the possibility that the GC could have belonged to a dwarf galaxy that contained more metal-rich stars, however. This scenario would explain the radial velocity members at higher metallicity, as well as the wth and velocity dispersion of the stream. In either case, a GC formed out of gas as poor in metals as these stars seems necessary to explain the existence of C-19. The possibility that no GC was associated with C-19 cannot be ruled out either. 
    more » « less