- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0002000003000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Banerjee, Moulinath (3)
-
Durot, Cécile (2)
-
Sun, Yuekai (2)
-
Yurochkin, Mikhail (2)
-
Guha, Aritra (1)
-
Khazaeni, Yasaman (1)
-
Maity, Subha (1)
-
Papailiopoulos, Dimitris (1)
-
Sen, Bodhisattva (1)
-
Sun, Y (1)
-
Wang, Hongyi (1)
-
Xuanlong, Nguyen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider the task of meta-analysis in high-dimensional settings in which the data sources are similar but non-identical. To borrow strength across such heterogeneous datasets, we introduce a global parameter that emphasizes interpretability and statistical efficiency in the presence of heterogeneity. We also propose a one-shot estimator of the global parameter that preserves the anonymity of the data sources and converges at a rate that depends on the size of the combined dataset. For high-dimensional linear model settings, we demonstrate the superiority of our identification restrictions in adapting to a previously seen data distribution as well as predicting for a new/unseen data distribution. Finally, we demonstrate the benefits of our approach on a large-scale drug treatment dataset involving several different cancer cell-lines.more » « less
-
Wang, Hongyi; Yurochkin, Mikhail; Sun, Yuekai; Papailiopoulos, Dimitris; Khazaeni, Yasaman (, International Conference on Learning Representations)
-
Banerjee, Moulinath; Durot, Cécile; Sen, Bodhisattva (, The Annals of Statistics)
-
Banerjee, Moulinath; Durot, Cécile (, Electronic Journal of Statistics)
-
Yurochkin, Mikhail; Guha, Aritra; Sun, Y; Xuanlong, Nguyen (, Proceedings of the 36th International Conference on Machine Learning)
An official website of the United States government

Full Text Available