skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1917713

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gaming the system is a persistent problem in Computer-Based Learning Platforms. While substantialprogress has been made in identifying and understanding such behaviors, effective interventions remainscarce. This study uses a method of causal moderation known as Fully Latent Principal Stratification toexplore the impact of two types of interventions – gamification and manipulation of assistance access –on the learning outcomes of students who tend to game the system. The results indicate that gamificationdoes not consistently mitigate these negative behaviors. One gamified condition had a consistentlypositive effect on learning regardless of students’ propensity to game the system, whereas the other had anegative effect on gamers. However, delaying access to hints and feedback may have a positive effect onthe learning outcomes of those gaming the system. This paper also illustrates the potential for integratingdetection and causal methodologies within educational data mining to evaluate effective responses to detectedbehaviors. 
    more » « less
  2. Feature acquisition in predictive modeling is an important task in many practical applications. For example, in patient health prediction, we do not fully observe their personal features and need to dynamically select features to acquire. Our goal is to acquire a small subset of features that maximize prediction performance. Recently, some works reformulated feature acquisition as a Markov decision process and applied reinforcement learning (RL) algorithms, where the reward reflects both prediction performance and feature acquisition cost. However, RL algorithms only use zeroth-order information on the reward, which leads to slow empirical convergence, especially when there are many actions (number of features) to consider. For predictive modeling, it is possible to use first-order information on the reward, i.e., gradients, since we are often given an already collected dataset. Therefore, we propose differentiable feature acquisition (DiFA), which uses a differentiable representation of the feature selection policy to enable gradients to flow from the prediction loss to the policy parameters. We conduct extensive experiments on various real-world datasets and show that DiFA significantly outperforms existing feature acquisition methods when the number of features is large. 
    more » « less
  3. In sequential recommender system applications, it is important to develop models that can capture users' evolving interest over time to successfully recommend future items that they are likely to interact with. For users with long histories, typical models based on recurrent neural networks tend to forget important items in the distant past. Recent works have shown that storing a small sketch of past items can improve sequential recommendation tasks. However, these works all rely on static sketching policies, i.e., heuristics to select items to keep in the sketch, which are not necessarily optimal and cannot improve over time with more training data. In this paper, we propose a differentiable policy for sketching (DiPS), a framework that learns a data-driven sketching policy in an end-to-end manner together with the recommender system model to explicitly maximize recommendation quality in the future. We also propose an approximate estimator of the gradient for optimizing the sketching algorithm parameters that is computationally efficient. We verify the effectiveness of DiPS on real-world datasets under various practical settings and show that it requires up to 50% fewer sketch items to reach the same predictive quality than existing sketching policies. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)