skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1920756

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Undergraduates enrolled in large, active learning courses must self-regulate their learning (self-regulated learning [SRL]) by appraising tasks, making plans, setting goals, and enacting and monitoring strategies. SRL researchers have relied on self-report and learner-mediated methods during academic tasks studied in laboratories and now collect digital event data when learners engage with technology-based tools in classrooms. Inferring SRL processes from digital events and testing their validity is challenging. We aligned digital and verbal SRL event data to validate digital events as traces of SRL and used them to predict achievement in lab and course settings. In Study 1, we sampled a learning task from a biology course into a laboratory setting. Enrolled students (N = 48) completed the lesson using digital resources (e.g., online textbook, course site) while thinking aloud weeks before it was taught in class. Analyses confirmed that 10 digital events reliably co-occurred ≥70% of the time with verbalized task definition and strategy use macroprocesses. Some digital events co-occurred with multiple verbalized SRL macroprocesses. Variance in occurrence of validated digital events was limited in lab sessions, and they explained statistically nonsignificant variance in learners’ performance on lesson quizzes. In Study 2, lesson-specific digital event data from learners (N = 307) enrolled in the course (but not in Study 1) predicted performance on lesson-specific exam items, final exams, and course grades. Validated digital events also predicted final exam and course grades in the next semester (N = 432). Digital events can be validated to reflect SRL processes and scaled to explain achievement in naturalistic undergraduate education settings. Educational Impact and Implications Statement Instructors often have difficulty identifying and helping struggling students in courses with hundreds of students. Digital trace data can be used to efficiently and effectively identify struggling students in these large courses, but such data are often difficult to interpret with confidence. In our study, we found that using verbal trace data to augment and validate our inferences about the meaning of digital trace data resulted in a powerful set of predictors of students’ achievement. These validated digital trace data can be used to not only identify students in need of support in large classes, but also to understand how to target interventions to the aspects of learning that are causing students the most difficulty. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Research in educational psychology involves empirical investigation into the learning process with an aim to refine psychological theories of learning and their application to real-world settings where they can be used to benefit learners. Emergent methodological processes involved in learning analytics include the study of event-based data produced by individuals in learning environments where they use technology. Paradigms for substantive-methodological synergy can be used to align the strengths of educational psychology and learning analytics research. The Journal of Educational Psychology invites such collaborations. This issue illustrates the advancements to educational theory and practice that can be attained when learning analytics practices are aligned to reflect the assumptions within psychological theories of learning and learning analytics methods including feature engineering and multimodal modeling are leveraged. Exemplars demonstrate learning analytics’ potential contribution to the refinement and application of theories of learning and motivation. Educational Impact and Implications Statement Theories about learning describe complex processes and how the ways individuals undertake them affect the understanding they obtain and performances they achieve. Many of these learning processes are difficult to observe in the naturalistic settings where people learn. When data individuals produce during learning with technologies are collected and modeled in alignment with learning theories and using learning analytics methods, they can make learning processes observable. Incorporating learning analytics into the study of learning and the development of instruction can help refine learning theories and the design of technologies that individuals use to learn. 
    more » « less