Abstract Undergraduate STEM lecture courses enroll hundreds who must master declarative, conceptual, and applied learning objectives. To support them, instructors have turned to active learning designs that require students to engage inself-regulated learning(SRL). Undergraduates struggle with SRL, and universities provide courses, workshops, and digital training to scaffold SRL skill development and enactment. We examined two theory-aligned designs of digital skill trainings that scaffold SRL and how students’ demonstration of metacognitive knowledge of learning skills predicted exam performance in biology courses where training took place. In Study 1, students’ (n = 49) responses to training activities were scored for quality and summed by training topic and level of understanding. Behavioral and environmental regulation knowledge predicted midterm and final exam grades; knowledge of SRL processes did not. Declarative and conceptual levels of skill-mastery predicted exam performance; application-level knowledge did not. When modeled by topic at each level of understanding, declarative knowledge of behavioral and environmental regulation and conceptual knowledge of cognitive strategies predicted final exam performance. In Study 2 (n = 62), knowledge demonstrated during a redesigned video-based multimedia version of behavioral and environmental regulation again predicted biology exam performance. Across studies, performance on training activities designed in alignment with skill-training models predicted course performances and predictions were sustained in a redesign prioritizing learning efficiency. Training learners’ SRL skills –and specifically cognitive strategies and environmental regulation– benefited their later biology course performances across studies, which demonstrate the value of providing brief, digital activities to develop learning skills. Ongoing refinement to materials designed to develop metacognitive processing and learners’ ability to apply skills in new contexts can increase benefits.
more »
« less
This content will become publicly available on February 1, 2026
Using multimodal learning analytics to validate digital traces of self-regulated learning in a laboratory study and predict performance in undergraduate courses.
Undergraduates enrolled in large, active learning courses must self-regulate their learning (self-regulated learning [SRL]) by appraising tasks, making plans, setting goals, and enacting and monitoring strategies. SRL researchers have relied on self-report and learner-mediated methods during academic tasks studied in laboratories and now collect digital event data when learners engage with technology-based tools in classrooms. Inferring SRL processes from digital events and testing their validity is challenging. We aligned digital and verbal SRL event data to validate digital events as traces of SRL and used them to predict achievement in lab and course settings. In Study 1, we sampled a learning task from a biology course into a laboratory setting. Enrolled students (N = 48) completed the lesson using digital resources (e.g., online textbook, course site) while thinking aloud weeks before it was taught in class. Analyses confirmed that 10 digital events reliably co-occurred ≥70% of the time with verbalized task definition and strategy use macroprocesses. Some digital events co-occurred with multiple verbalized SRL macroprocesses. Variance in occurrence of validated digital events was limited in lab sessions, and they explained statistically nonsignificant variance in learners’ performance on lesson quizzes. In Study 2, lesson-specific digital event data from learners (N = 307) enrolled in the course (but not in Study 1) predicted performance on lesson-specific exam items, final exams, and course grades. Validated digital events also predicted final exam and course grades in the next semester (N = 432). Digital events can be validated to reflect SRL processes and scaled to explain achievement in naturalistic undergraduate education settings. Educational Impact and Implications Statement Instructors often have difficulty identifying and helping struggling students in courses with hundreds of students. Digital trace data can be used to efficiently and effectively identify struggling students in these large courses, but such data are often difficult to interpret with confidence. In our study, we found that using verbal trace data to augment and validate our inferences about the meaning of digital trace data resulted in a powerful set of predictors of students’ achievement. These validated digital trace data can be used to not only identify students in need of support in large classes, but also to understand how to target interventions to the aspects of learning that are causing students the most difficulty.
more »
« less
- Award ID(s):
- 1920756
- PAR ID:
- 10654996
- Publisher / Repository:
- APA
- Date Published:
- Journal Name:
- Journal of Educational Psychology
- Volume:
- 117
- Issue:
- 2
- ISSN:
- 0022-0663
- Page Range / eLocation ID:
- 176 to 205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Success in online and blended courses requires engaging in self-regulated learning (SRL), especially for challenging STEM disciplines, such as physics. This involves students planning how they will navigate course assignments and activities, setting goals for completion, monitoring their progress and content understanding, and reflecting on how they completed each assignment. Based on Winne & Hadwin’s COPES model, SRL is a series of events that temporally unfold during learning, impacted by changing internal and external factors, such as goal orientation and content difficulty. Thus, as goal orientation and content difficulty change throughout a course, so might students’ use of SRL processes. This paper studies how students’ SRL behavior and achievement goal orientation change over time in a large ( N = 250) college introductory level physics course taught online. Students’ achievement goal orientation was measured by repeated administration of the achievement goals questionnaire-revised (AGQ-R). Students’ SRL behavior was measured by analyzing their clickstream event traces interacting with online learning modules via a combination of trace clustering and process mining. Event traces were first divided into groups similar in nature using agglomerative clustering, with similarity between traces determined based on a set of derived characteristics most reflective of students’ SRL processes. We then generated causal nets for each cluster of traces via process mining and interpreted the underlying behavior and strategy of each causal net according to the COPES SRL framework. We then measured the frequency at which students adopted each causal net and assessed whether the adoption of different causal nets was associated with responses to the AGQ-R. By repeating the analysis for three sets of online learning modules assigned at the beginning, middle, and end of the semester, we examined how the frequency of each causal net changed over time, and how the change correlated with changes to the AGQ-R responses. Results have implications for measuring the temporal nature of SRL during online learning, as well as the factors impacting the use of SRL processes in an online physics course. Results also provide guidance for developing online instructional materials that foster effective SRL for students with different motivational profiles.more » « less
-
Self-regulated learning (SRL) is an essential factor in academic success. Self-regulated learning is a process where learners set clear goals, monitor progress toward attainment of those goals, and adapt their strategies to improve their learning. Because SRL is often not explicitly integrated into the classroom, students struggle to identify and use learning techniques empirically proven to be more successful than others. SRL is a learned skill students can develop over time that has been found to be related to high achievement and self-efficacy. This paper examines the effects of introducing SRL strategies into an undergraduate introductory physics classroom. The degree to which the students were self-regulated learners was correlated with their test averages (r = 0.23, p < 0.05). Students reported that they found the SRL instruction helpful (3.5 out of 5.0 on a 5-point scale) and 86% of the students felt the time spent on the instruction was generally appropriate. Students’ preferred study methods changed over the course of the semester, indicating that students applied SRL by adapting their learning processes based on which methods were most effective in helping them study for an upcoming exam and opting not to use techniques no longer perceived as useful. Higher achieving students were more likely to settle on highly effective techniques by the end of the semester, while lower achieving students continued to modify their learning processes.more » « less
-
Student-instructor interactions have an influence on student achievement and perceptions of learning. In college and university settings, large introductory STEM courses are increasingly including Peer-Led Team Learning (PLTL), an evidence-based technique associated with improved student achievement, recruitment, and retention in STEM fields, especially for underserved populations. Within this technique, peer leaders hold a unique position in a student’s education. Peer leaders have relevant experience in that they have had recent success in the courses in which they facilitate student learning, yet, compared to student-faculty or student-teaching assistant relationships, there is minimal imbalance of authority or power. Students might find their peer leaders to be more relatable than faculty or graduate teaching assistants, and may even consider them to be role models. We explored students’ perceptions of peer leader relatability and role model status in relation to students’ achievement and their perceived learning gains in the context of an introductory biology course with an associated PLTL program. The final course grades and self-assessed learning gains of PLTL students who felt they related to their peer leader were compared to those who did not. We also compared final course grades and self-assessed learning gains between PLTL students who viewed their peer leader as a role model versus those who did not. Self-reported learning gains were significantly higher for students who relate to their peer leader, as well as for students who viewed their peer leaders as a role model. There is some support that this trend is stronger for STEM majors versus those who are not enrolled in a STEM program, though the interaction is not significant. Significant differences in overall course grade were only observed between students who reported that they related to their peer leader versus those who did not relate to their peer leader.more » « less
-
Abstract Capturing evidence for dynamic changes in self‐regulated learning (SRL) behaviours resulting from interventions is challenging for researchers. In the current study, we identified students who were likely to do poorly in a biology course and those who were likely to do well. Then, we randomly assigned a portion of the students predicted to perform poorly to a science of learning to learn intervention where they were taught SRL study strategies. Learning outcome and log data (257 K events) were collected fromn = 226 students. We used a complex systems framework to model the differences in SRL including the amount, interrelatedness, density and regularity of engagement captured in digital trace data (ie, logs). Differences were compared between students who were predicted to (1) perform poorly (control,n = 48), (2) perform poorly and received intervention (treatment,n = 95) and (3) perform well (not flagged,n = 83). Results indicated that the regularity of students' engagement was predictive of course grade, and that the intervention group exhibited increased regularity in engagement over the control group immediately after the intervention and maintained that increase over the course of the semester. We discuss the implications of these findings in relation to the future of artificial intelligence and potential uses for monitoring student learning in online environments. Practitioner notesWhat is already known about this topicSelf‐regulated learning (SRL) knowledge and skills are strong predictors of postsecondary STEM student success.SRL is a dynamic, temporal process that leads to purposeful student engagement.Methods and metrics for measuring dynamic SRL behaviours in learning contexts are needed.What this paper addsA Markov process for measuring dynamic SRL processes using log data.Evidence that dynamic, interaction‐dominant aspects of SRL predict student achievement.Evidence that SRL processes can be meaningfully impacted through educational intervention.Implications for theory and practiceComplexity approaches inform theory and measurement of dynamic SRL processes.Static representations of dynamic SRL processes are promising learning analytics metrics.Engineered features of LMS usage are valuable contributions to AI models.more » « less
An official website of the United States government
