Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Flying snakes (genus Chrysopelea) glide without the use of wings. Instead, they splay their ribs and undulate through the air. A snake's ability to glide depends on how well its morphing wing-body produces lift and drag forces. However, previous kinematics experiments under-resolved the body, making it impossible to estimate the aerodynamic load on the animal or to quantify the different wing configurations throughout the glide. Here, we present new kinematic analyses of a previous glide experiment, and use the results to test a theoretical model of flying snake aerodynamics using previously measured lift and drag coefficients to estimate the aerodynamic forces. This analysis is enabled by new measurements of the center of mass motion based on experimental data. We found that quasi-steady aerodynamic theory under-predicts lift by 35% and over-predicts drag by 40%. We also quantified the relative spacing of the body as the snake translates through the air. In steep glides, the body is generally not positioned to experience tandem effects from wake interaction during the glide. These results suggest that unsteady 3D effects, with appreciable force enhancement, are important for snake flight. Future work can use the kinematics data presented herein to form test conditions for physical modeling, as well as computational studies to understand unsteady fluid dynamics effects on snake flight.more » « less
-
For the recently legalized US hemp industry (Cannabis sativa), cross-pollination between neighboring fields has become a significant challenge, leading to contaminated seeds, reduced oil yields, and in some cases, mandated crop destruction. As a step towards assessing hemp cross-pollination risk, this study characterizes the seasonal and spatial patterns in windborne hemp pollen dispersal spanning the conterminous United States (CONUS). By leveraging meteorological data obtained through mesoscale model simulations, we have driven Lagrangian Stochastic models to simulate wind-borne hemp pollen dispersion across CONUS on a county-by-county basis for five months from July to November, encompassing the potential flowering season for industrial hemp. Our findings reveal that pollen deposition rates escalate from summer to autumn due to the reduction in convective activity during daytime and the increase in wind shear at night as the season progresses. We find diurnal variations in pollen dispersion: nighttime conditions favor deposition in proximity to the source, while daytime conditions facilitate broader dispersal albeit with reduced deposition rates. These shifting weather patterns give rise to specific regions of CONUS more vulnerable to hemp cross-pollination.more » « less
-
null (Ed.)This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourselves to polynomial vector fields to make this construction easier, we find that such vector fields do exist, and we explore whether such vector fields have a special structure, thus making a link between the geometric theory and the transfer operator theory.more » « less
An official website of the United States government
