skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourselves to polynomial vector fields to make this construction easier, we find that such vector fields do exist, and we explore whether such vector fields have a special structure, thus making a link between the geometric theory and the transfer operator theory.  more » « less
Award ID(s):
1821145 1922516
PAR ID:
10301681
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Mathematics
Volume:
9
Issue:
21
ISSN:
2227-7390
Page Range / eLocation ID:
2731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Koopman operator theory provides a global linearization framework for general nonlinear dynamics, offering significant advantages for system analysis and control. However, practical applications typically involve approximating the infinite-dimensional Koopman operator in a lifted space spanned by a finite set of observable functions. The accuracy of this approximation is the key to effective Koopman operator-based analysis and control methods, generally improving as the dimension of the observables increases. Nonetheless, this increase in dimensionality significantly escalates both storage requirements and computational complexity, particularly for high-dimensional systems, thereby limiting the applicability of these methods in real-world problems. In this paper, we address this problem by reformulating the Koopman operator in tensor format to break the curse of dimensionality associated with its approximation through tensor decomposition techniques. This effective reduction in complexity enables the selection of high-dimensional observable functions and the handling of large-scale datasets, which leads to a precise linear prediction model utilizing the tensor-based Koopman operator. Furthermore, we propose an optimal control framework with the tensor-based Koopman operator, which adeptly addresses the nonlinear dynamics and constraints by linear reformulation in the lifted space and significantly reduces the computational complexity through separated representation of the tensor structure. 
    more » « less
  2. Nonlinear ODEs can rarely be solved analytically. Koopman operator theory provides a way to solve two-dimensional nonlinear systems, under suitable restrictions, by mapping nonlinear dynamics to a linear space using Koopman eigenfunctions. Unfortunately, finding such eigenfunctions is difficult. We introduce a method for constructing Koopman eigenfunctions from a two-dimensional nonlinear ODE’s one-dimensional invariant manifolds. This method, when successful, allows us to find analytical solutions for autonomous, nonlinear systems. Previous data-driven methods have used Koopman theory to construct local Koopman eigenfunction approximations valid in different regions of phase space; our method finds analytic Koopman eigenfunctions that are exact and globally valid. We demonstrate our Koopman method of solving nonlinear systems on one-dimensional and two-dimensional ODEs. The nonlinear examples considered have simple expressions for their codimension-1 invariant manifolds which produce tractable analytical solutions. Thus our method allows for the construction of analytical solutions for previously unsolved ODEs. It also highlights the connection between invariant manifolds and eigenfunctions in nonlinear ODEs and presents avenues for extending this method to solve more nonlinear systems. 
    more » « less
  3. A global modeling methodology based on Koopman operator theory for the dynamics of rigid bodies that make and break contact is presented. Traditionally, robotic systems that contact with their environment are represented as a system comprised of multiple dynamic equations that are switched depending on the contact state. This switching of governing dynamics has been a challenge in both task planning and control. Here, a Koopman lifting linearization approach is presented to subsume multiple dynamics such that no explicit switching is required for examining the dynamic behaviors across diverse contact states. First, it is shown that contact/noncontact transitions are continuous at a microscopic level. This allows for the application of Koopman operator theory to the class of robotic systems that repeat contact/non-contact transitions. Second, an effective method for finding Koopman operator observables for capturing rapid changes to contact forces is presented. The method is applied to the modeling of dynamic peg insertion where a peg collides against and bounces on the chamfer of the hole. Furthermore, the method is applied to the dynamic modeling of a sliding object subject to complex friction and damping properties. Segmented dynamic equations are unified with the Koopman modeling method. 
    more » « less
  4. A global modeling methodology based on Koopman operator theory for the dynamics of rigid bodies that make and break contact is presented. Traditionally, robotic systems that contact with their environment are represented as a system comprised of multiple dynamic equations that are switched depending on the contact state. This switching of governing dynamics has been a challenge in both task planning and control. Here, a Koopman lifting linearization approach is presented to subsume multiple dynamics such that no explicit switching is required for examining the dynamic behaviors across diverse contact states. First, it is shown that contact/noncontact transitions are continuous at a microscopic level. This allows for the application of Koopman operator theory to the class of robotic systems that repeat contact/non-contact transitions. Second, an effective method for finding Koopman operator observables for capturing rapid changes to contact forces is presented. The method is applied to the modeling of dynamic peg insertion where a peg collides against and bounces on the chamfer of the hole. Furthermore, the method is applied to the dynamic modeling of a sliding object subject to complex friction and damping properties. Segmented dynamic equations are unified with the Koopman modeling method. 
    more » « less
  5. Developing an accurate dynamic model for an Autonomous Underwater Vehicle (AUV) is challenging due to the diverse array of forces exerted on it in an underwater environment. These forces include hydrodynamic effects such as drag, buoyancy, and added mass. Consequently, achieving precision in predicting the AUV's behavior requires a comprehensive understanding of these dynamic forces and their interplay. In our research, we have devised a linear data-driven dynamic model rooted in Koopman's theory. The cornerstone of leveraging Koopman theory lies in accurately estimating the Koopman operator. To achieve this, we employ the dynamic mode decomposition (DMD) method, which enables the generation of the Koopman operator. We have developed a Fractional Sliding Mode Control (FSMC) method to provide robustness and high tracking performance for AUV systems. The efficacy of the proposed controller has been verified through simulation results. 
    more » « less