skip to main content


Search for: All records

Award ID contains: 1925360

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Robotically assisted painting is widely used for spray and dip applications. However, use of robots for coating substrates using a roller applicator has not been systematically investigated. We showed for the first time, a generic robot arm-supported approach to painting engineering substrates using a roller with a constant force at an accurate joint step, while retaining compliance and thus safety. We optimized the robot design such that it is able to coat the substrate using a roller with a performance equivalent to that of a human applicator. To achieve this, we optimized the force, frequency of adjustment, and position control parameters of robotic design. A framework for autonomous coating is available athttps://github.com/duyayun/Vision-and-force-control-automonous-painting-with-rollers; users are only required to provide the boundary coordinates of surfaces to be coated. We found that robotically- and human-painted panels showed similar trends in dry film thickness, coating hardness, flexibility, impact resistance, and microscopic properties. Color profile analysis of the coated panels showed non-significant difference in color scheme and is acceptable for architectural paints. Overall, this work shows the potential of robot-assisted coating strategy using roller applicator. This could be a viable option for hazardous area coating, high-altitude architectural paints, germs sanitization, and accelerated household applications.

     
    more » « less
  2. Free, publicly-accessible full text available August 1, 2024
  3. Inertial navigation provides a small footprint, low-power, and low-cost pathway for localization in GPS-denied environments on extremely resource-constrained Internet-of-Things (IoT) platforms. Traditionally, application-specific heuristics and physics-based kinematic models are used to mitigate the curse of drift in inertial odometry. These techniques, albeit lightweight, fail to handle domain shifts and environmental non-linearities. Recently, deep neural-inertial sequence learning has shown superior odometric resolution in capturing non-linear motion dynamics without human knowledge over heuristic-based methods. These AI-based techniques are data-hungry, suffer from excessive resource usage, and cannot guarantee following the underlying system physics. This paper highlights the unique methods, opportunities, and challenges in porting real-time AI-enhanced inertial navigation algorithms onto IoT platforms. First, we discuss how platform-aware neural architecture search coupled with ultra-lightweight model backbones can yield neural-inertial odometry models that are 31–134 x smaller yet achieve or exceed the localization resolution of state-of-the-art AI-enhanced techniques. The framework can generate models suitable for locating humans, animals, underwater sensors, aerial vehicles, and precision robots. Next, we showcase how techniques from neurosymbolic AI can yield physics-informed and interpretable neural-inertial navigation models. Afterward, we present opportunities for fine-tuning pre-trained odometry models in a new domain with as little as 1 minute of labeled data, while discussing inexpensive data collection and labeling techniques. Finally, we identify several open research challenges that demand careful consideration moving forward. 
    more » « less
    Free, publicly-accessible full text available April 24, 2024
  4. Abstract When an overhand knot tied in an elastic rod is tightened, it can undergo a sudden change in shape through snap buckling. In this article, we use a combination of discrete differential geometry (DDG)-based simulations and tabletop experiments to explore the onset of buckling as a function of knot topology, rod geometry, and friction. In our setup, two open ends of an overhand knot are slowly pulled apart, which leads to snap buckling in the knot loop. We call this phenomenon “inversion” since the loop appears to move dramatically from one side of the knot to the other. This inversion occurs due to the coupling of elastic energy between the braid (the portion of the knot in self-contact) and the loop (the portion of the knot with two ends connected to the braid). A numerical framework is implemented that combines discrete elastic rods with a constraint-based method for frictional contact to explore inversion in overhand knots. The numerical simulation robustly captures inversion in the knot and is found to be in good agreement with experimental results. In order to gain physical insight into the inversion process, we also develop a simplified model of the knot that does not require simulation of self-contact, which allows us to visualize the bifurcation that results in snap buckling. 
    more » « less
  5. The bundling of flagella is known to create a “run” phase, where the bacteria moves in a nearly straight line rather than making changes in direction. Historically, mechanical explanations for the bundling phenomenon intrigued many researchers, and significant advances were made in physical models and experimental methods. Contributing to the field of research, we present a bacteria-inspired centimeter-scale soft robotic hardware platform and a computational framework for a physically plausible simulation model of the multi-flagellated robot under low Reynolds number (∼10 −1 ). The fluid–structure interaction simulation couples the discrete elastic rods algorithm with the method of regularized Stokeslet segments. Contact between two flagella is handled by a penalty-based method. We present a comparison between our experimental and simulation results and verify that the simulation tool can capture the essential physics of this problem. Preliminary findings on robustness to buckling provided by the bundling phenomenon and the efficiency of a multi-flagellated soft robot are compared with the single-flagellated counterparts. Observations were made on the coupling between geometry and elasticity, which manifests itself in the propulsion of the robot by nonlinear dependency on the rotational speed of the flagella. 
    more » « less
  6. Precision agricultural robots require highresolution navigation solutions. In this paper, we introduce a robust neural-inertial sequence learning approach to track such robots with ultra-intermittent GNSS updates. First, we propose an ultra-lightweight neural-Kalman filter that can track agricultural robots within 1.4 m (1.4 - 5.8× better than competing techniques), while tracking within 2.75 m with 20 mins of GPS outage. Second, we introduce a user-friendly video-processing toolbox to generate high-resolution (±5 cm) position data for fine-tuning pre-trained neural-inertial models in the field. Third, we introduce the first and largest (6.5 hours, 4.5 km, 3 phases) public neural-inertial navigation dataset for precision agricultural robots. The dataset, toolbox, and code are available at: https://github.com/nesl/agrobot. 
    more » « less
  7. Abstract Flagella and cilia are slender structures that serve important functionalities in the microscopic world through their locomotion induced by fluid and structure interaction. With recent developments in microscopy, fabrication, biology, and modeling capability, robots inspired by the locomotion of these organelles in low Reynolds number flow have been manufactured and tested on the micro-and macro-scale, ranging from medical in vivo microbots, microfluidics to macro prototypes. We present a collection of modeling theories, control principles, and fabrication methods for flagellated and ciliary robots. 
    more » « less
  8. Abstract The mechanical response of a knot tied in elastic rods strongly depends on the frictional force due to rod–rod contact. The behavior of a knot can be qualitatively different based on the frictional coefficient of the elastic rod. Systematic variation of friction during rod–rod contact is a crucial component of any experimental design to uncover the underlying ingredients behind the mechanics of knots. In this paper, we demonstrate a novel process of controlling the friction of a continuous rod by adhering non-spherical inorganic micro-particles. Polymeric binder is used to deliver the particles as asperities over the rod substrate and by controlling their size and distribution the coefficient of friction of the rod is determined. In parallel, numerical simulations with the discrete elastic rods algorithm are used to reproduce the experimental observations. Tabletop experiments are performed where overhand knots with a variety of unknotting numbers are pulled tight. The force–extension curve of these experiments shows that the proposed process can successfully tune the friction between rods. 
    more » « less