skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1926303

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Decomposition‐based solution algorithms for optimization problems depend on the underlying latent block structure of the problem. Methods for detecting this structure are currently lacking. In this article, we propose stochastic blockmodeling (SBM) as a systematic framework for learning the underlying block structure in generic optimization problems. SBM is a generative graph model in which nodes belong to some blocks and the interconnections among the nodes are stochastically dependent on their block affiliations. Hence, through parametric statistical inference, the interconnection patterns underlying optimization problems can be estimated. For benchmark optimization problems, we show that SBM can reveal the underlying block structure and that the estimated blocks can be used as the basis for decomposition‐based solution algorithms which can reach an optimum or bound estimates in reduced computational time. Finally, we present a general software platform for automated block structure detection and decomposition‐based solution following distributed and hierarchical optimization approaches. 
    more » « less