Abstract River networks regulate carbon and nutrient exchange between continents, atmosphere, and oceans. However, contributions of riverine processing are poorly constrained at continental scales. Scaling relationships of cumulative biogeochemical function with watershed size (allometric scaling) provide an approach for quantifying the contributions of fluvial networks in the Earth system. Here we show that allometric scaling of cumulative riverine function with watershed area ranges from linear to superlinear, with scaling exponents constrained by network shape, hydrological conditions, and biogeochemical process rates. Allometric scaling is superlinear for processes that are largely independent of substrate concentration (e.g., gross primary production) due to superlinear scaling of river network surface area with watershed area. Allometric scaling for typically substrate-limited processes (e.g., denitrification) is linear in river networks with high biogeochemical activity or low river discharge but becomes increasingly superlinear under lower biogeochemical activity or high discharge, conditions that are widely prevalent in river networks. The frequent occurrence of superlinear scaling indicates that biogeochemical activity in large rivers contributes disproportionately to the function of river networks in the Earth system.
more »
« less
Allometric Scaling of Hyporheic Respiration Across Basins in the Pacific Northwest United States
Abstract Hyporheic zones regulate biogeochemical processes in streams and rivers, but high spatiotemporal heterogeneity makes it difficult to predict how these processes scale from individual reaches to river basins. Recent work applying allometric scaling (i.e., power‐law relationships between size and function) to river networks provides a new paradigm for understanding cumulative hyporheic biogeochemical processes. We used previously published model predictions of reach‐scale hyporheic aerobic respiration to explore patterns in allometric scaling across two climatically divergent basins with differing characteristics in the Pacific Northwest, United States. In the model, hydrologic exchange fluxes (HEFs) regulate hyporheic respiration, so we examined how HEFs might influence allometric scaling of respiration. We found consistent scaling behaviors where HEFs were either very low or very high, but differences between basins when HEFs were moderate. Our findings provide initial model‐generated hypotheses for factors influencing allometric scaling of hyporheic respiration. These hypotheses can be used to optimize new data generation efforts aimed at developing predictive understanding of allometries that can, in turn, be used to scale biogeochemical dynamics across watersheds.
more »
« less
- PAR ID:
- 10581466
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 130
- Issue:
- 3
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fluvial networks integrate, transform, and transport constituents from terrestrial and aquatic ecosystems. To date, most research on water quality dynamics has focused on process understanding at individual streams, and, as a result, there is a lack of studies analyzing how physical and biogeochemical drivers scale across fluvial networks. We performed tracer tests in five stream orders of the Jemez River continuum in New Mexico, USA, to quantify reach‐scale hyporheic exchange during two different seasonal periods to address the following: How do hyporheic zone contributions to overall riverine processing change with space and time? And does the spatiotemporal variability of hyporheic exchange scale across fluvial networks? Combining conservative (i.e., bromide) and reactive (i.e., resazurin) tracer analyses with solute transport modeling, we found a dominance of reaction‐limited transport conditions and a decrease of the contributions of hyporheic processing across stream orders and flow regimes. Our field‐based findings suggest that achieving knowledge transferability of hyporheic processing within fluvial networks may be possible, especially when process variability is sampled across multiple stream orders and flow regimes. Therefore, we propose a shift in our traditional approach to investigating scaling patterns in transport processes, which currently relies on the interpretation of studies conducted in multiple sites (mainly in headwater streams) that are located in different fluvial networks, to a more cohesive, network‐centered investigation of processes using the same or readily comparable methods.more » « less
-
Abstract Hydrologic exchange processes are critical for ecosystem services along river corridors. Meandering contributes to this exchange by driving channel water, solutes, and energy through the surrounding alluvium, a process called sinuosity‐driven hyporheic exchange. This exchange is embedded within and modulated by the regional groundwater flow (RGF), which compresses the hyporheic zone and potentially diminishes its overall impact. Quantifying the role of sinuosity‐driven hyporheic exchange at the reach‐to‐watershed scale requires a mechanistic understanding of the interplay between drivers (meander planform) and modulators (RGF) and its implications for biogeochemical transformations. Here, we use a 2D, vertically integrated numerical model for flow, transport, and reaction to analyze sinuosity‐driven hyporheic exchange systematically. Using this model, we propose a dimensionless framework to explore the role of meander planform and RGF in hydrodynamics and how they constrain nitrogen cycling. Our results highlight the importance of meander topology for water flow and age. We demonstrate how the meander neck induces a shielding effect that protects the hyporheic zone against RGF, imposing a physical constraint on biogeochemical transformations. Furthermore, we explore the conditions when a meander acts as a net nitrogen source or sink. This transition in the net biogeochemical potential is described by a handful of dimensionless physical and biogeochemical parameters that can be measured or constrained from literature and remote sensing. This work provides a new physically based model that quantifies sinuosity‐driven hyporheic exchange and biogeochemical reactions, a critical step toward their representation in water quality models and the design and assessment of river restoration strategies.more » « less
-
Abstract Hyporheic exchange is a crucial control of the type and rates of streambed biogeochemical processes, including metabolism, respiration, nutrient turnover, and the transformation of pollutants. Previous work has shown that increasing discharge during an individual peak flow event strengthens biogeochemical turnover by enhancing the exchange of water and dissolved solutes. However, due to the nonsteady nature of the exchange process, successive peak flow events do not exhibit proportional variations in residence time and turnover, and in some cases, can reduce the hyporheic zones' biogeochemical potential. Here, we used a process‐based model to explore the role of successive peak flow events on the flow and transport characteristics of bedform‐induced hyporheic exchange. We conducted a systematic analysis of the impacts of the events' magnitude, duration, and time between peaks in the hyporheic zone's fluxes, penetration, and residence times. The relative contribution of each event to the transport of solutes across the sediment‐water interface was inferred from transport simulations of a conservative solute. In addition to temporal variations in the hyporheic flow field, our results demonstrate that the separation between two events determines the temporal evolution of residence time and that event time lags longer than the memory of the system result in successive events that can be treated independently. This study highlights the importance of discharge variability in the dynamics of hyporheic exchange and its potential implications for biogeochemical transformations and fate of contaminants along river corridors.more » « less
-
Fecal contamination is a significant source of water quality impairment globally. Aquatic ecosystems can provide an important ecosystem service of fecal contamination removal. Understanding the processes that regulate the removal of fecal contamination among river networks across flow conditions is critical. We applied a river network model, the Framework for Aquatic Modeling in the Earth System (FrAMES-Ecoli), to quantify removal of fecal indicator bacteria by river networks across flow conditions during summers in a series of New England watersheds of different characteristics. FrAMES-Ecoli simulates sources, transport, and riverine removal of Escherichia coli (E. coli). Aquatic E. coli removal was simulated in both the water column and the hyporheic zone, and is a function of hydraulic conditions, flow exchange rates with the hyporheic zone, and die-off in each compartment. We found that, at the river network scale during summers, removal by river networks can be high (19–99%) with variability controlled by hydrologic conditions, watershed size, and distribution of sources in the watershed. Hydrology controls much of the variability, with 68–99% of network scale inputs removed under base flow conditions and 19–85% removed during storm events. Removal by the water column alone could not explain the observed pattern in E. coli, suggesting that processes such as hyporheic removal must be considered. These results suggest that river network removal of fecal indicator bacteria should be taken into consideration in managing fecal contamination at critical downstream receiving waters.more » « less
An official website of the United States government
