skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Explaining Patterns of Biodiversity Across Neon Sites Using Landsat-Based Disturbance Metrics
Disturbance regimes can strongly influence geographic patterns of biodiversity. The types of disturbances and their frequencies can have varying impacts on different dimensions of biodiversity and taxonomic groups, and their influence can also vary with spatial scale. Yet disturbance layers are lacking at sufficiently high spatial resolution and extent to uncover these relationships with biodiversity. We detected disturbances for the conterminous United States from Landsat time series using the established LandTrendr temporal segmentation with a novel secondary classification that incorporates spatial context. We then included these disturbance layers, aggregated to metrics at different temporal and spatial scales, into model of species richness at National Ecological Observatory Network sites.  more » « less
Award ID(s):
1926567
NSF-PAR ID:
10364230
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
Page Range / eLocation ID:
6252 to 6255
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Anthropocene is characterized by complex, primarily human‐generated, disturbance regimes that include combinations of long‐term press (e.g. climate change, pollution) and episodic pulse (e.g. cyclonic storms, floods, wildfires, land use change) disturbances. Within any regime, disturbances occur at multiple spatial and temporal scales, creating complex and varied interactions that influence spatiotemporal dynamics in the abundance, distribution and biodiversity of organisms. Moreover, responses to disturbance are context dependent, with the legacies of previous disturbances affecting responses to ensuing perturbations. We use three decades of annual data to evaluate the effects of repeated pulse disturbances and global warming on gastropod populations and communities in Puerto Rico at multiple spatial scales. More specifically, we quantify 1) the relative importance of large‐scale and small‐scale aspects of disturbance on variation in abundance, biodiversity and species composition; and 2) the spatial scales at which populations and communities integrate information in the spatially heterogenous environments created by disturbances. Gastropods do not exhibit consistent decreases in abundance or biodiversity in association with global warming: abundance for many species has increased over time and species richness does not evince a temporal trend. Nonetheless, gastropods are sensitive to hurricane severity, spatial environmental variation and successional trajectories of the flora. In addition, they exhibit context dependent (i.e. legacy effects) responses that are scale dependent. The Puerto Rican biota has evolved in a disturbance‐mediated system. This historical exposure to repeated, severe hurricane‐induced disturbances has imbued the biota with high resistance and resilience to the current disturbance regime, resulting in an ability to persist or thrive under current environmental conditions. Nonetheless, these ecosystems may yet be threatened by worsening direct and indirect effects of climate change. In particular, more frequent and severe hurricanes may prevent the establishment of closed canopy forests, negatively impacting populations and communities that rely on these habitats.

     
    more » « less
  2. The effects of disturbance on local species diversity have been well documented, but less recognized is the possibility that disturbances can alter diversity at regional spatial scales. Since regional diversity can dictate which species are available for recolonization of degraded sites, the loss of diversity at regional scales may impede the recovery of biodiversity following a disturbance. To examine this we used a chemical disturbance of rotenone, a piscicide commonly used for fish removal in aquatic habitats, on small fishless freshwater ponds. We focused on the non-target effects of rotenone on aquatic invertebrates with the goal of assessing biodiversity loss and recovery at both local (within-pond) and regional (across ponds) spatial scales. We found that rotenone caused significant, large, but short-term losses of species at both local and regional spatial scales. Using a null model of random extinction, we determined that species were selectively removed from communities relative to what would be expected if species loss occurred randomly. Despite this selective loss of biodiversity, species diversity at both local and regional spatial scales recovered to reference levels one year after the addition of rotenone. The rapid recovery of local and regional diversity in this study was surprising considering the large loss of regional species diversity, however many aquatic invertebrates disperse readily or have resting stages that may persist through disturbances. We emphasize the importance of considering spatial scale when quantifying the impacts of a disturbance on an ecosystem, as well as considering how regional species loss can influence recovery from disturbance.

     
    more » « less
  3. Over the past several decades, forests worldwide have experienced increases in biotic disturbances caused by insects and plant pathogens – a trend that is expected to continue with climate warming. Whereas the causes and effects of individual biotic disturbances are well studied, spatiotemporal interactions among multiple biotic disturbances are less so, despite their importance to ecosystem function and resilience. Here, we highlight an emerging phenomenon of “hotspots” of biotic disturbances (that is, two or more biotic disturbances that overlap in space and time), documenting trends in recent decades in temperate conifer forests of the western US. We also explore potential mechanisms behind and effects of biotic disturbance hotspots, with particular focus on how altered post‐disturbance recovery (successional pathways) can have profound consequences for ecosystem resilience and biodiversity conservation. Finally, we propose research directions that can elucidate drivers of biotic disturbance hotspots and their ecological effects at various spatial scales, and provide insight into this new knowledge frontier.

     
    more » « less
  4. Abstract

    Multiple disturbances can have mixed effects on biodiversity. Whether the interaction of sequential disturbances drives local extinctions or promotes diversity depends on the severity of biomass reductions relative to any stabilizing and/or equalizing effects generated by the disturbance regimes.

    Through a manipulative mesocosm experiment, we examined how warming events in the fall and simulated grazing disturbance (i.e. clipping) in the winter affected the density, biomass and genotypic diversity of assemblages of the clonal seagrassZostera marina.

    We show that the interaction of the two disturbance types reduced density and biomass to a greater degree than warming or clipping alone.

    The genotype with the highest biomass in the assemblage shifted under the different experimental regimes such that the traits of winners were distinct in the different treatments. The favouring of different traits by different disturbances led to reduced evenness when a single disturbance was applied, and enhanced evenness under multiple disturbances.

    We conclude that sequential disturbances can alter the outcome of inter‐genotypic interactions and maintain genotypic diversity in clonal populations. Our study expands the context in which disturbance can influence intraspecific diversity by showing that fluctuating selection may result from the sequential application of different disturbance types and not simply seasonal changes in a single agent.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  5. Abstract

    Ecosystems in the North American Arctic-Boreal Zone (ABZ) experience a diverse set of disturbances associated with wildfire, permafrost dynamics, geomorphic processes, insect outbreaks and pathogens, extreme weather events, and human activity. Climate warming in the ABZ is occurring at over twice the rate of the global average, and as a result the extent, frequency, and severity of these disturbances are increasing rapidly. Disturbances in the ABZ span a wide gradient of spatiotemporal scales and have varying impacts on ecosystem properties and function. However, many ABZ disturbances are relatively understudied and have different sensitivities to climate and trajectories of recovery, resulting in considerable uncertainty in the impacts of climate warming and human land use on ABZ vegetation dynamics and in the interactions between disturbance types. Here we review the current knowledge of ABZ disturbances and their precursors, ecosystem impacts, temporal frequencies, spatial extents, and severity. We also summarize current knowledge of interactions and feedbacks among ABZ disturbances and characterize typical trajectories of vegetation loss and recovery in response to ecosystem disturbance using satellite time-series. We conclude with a summary of critical data and knowledge gaps and identify priorities for future study.

     
    more » « less