Abstract Structural diversity—the volume and physical arrangement of vegetation within the three‐dimensional (3D) space of ecosystems—is a predictor of ecosystem function that can be measured at large scales with remote sensing. However, the landscape composition and configuration of structural diversity across macrosystems have not been well described. Using a relatively recently developed method to quantify landscape composition and configuration of continuous habitat or terrain, we propose the application of gradient surface metrics (GSMs) to quantify landscape patterns of structural diversity and provide insights into how its spatial pattern relates to ecosystem function. We first applied an example set of GSMs that represent landscape heterogeneity, dominance, and edge density to Lidar‐derived structural diversity within 28 forested landscapes at National Ecological Observatory Network (NEON) sites. Second, we tested for forest type, geographic location, and climate drivers of macroscale variation in GSMs of structural diversity (GSM‐SD). Third, we demonstrated the utility of these metrics for understanding spatial patterns of ecosystem function in a case study with NDVI, a proxy of productivity. We found that GSM‐SD varied in landscapes within macrosystems, with forest type, geographic location, and climate being significantly related to some but not all metrics. We also found that dominance of high peaks of height and vertical complexity of canopy vegetation and the heterogeneity of the vertical complexity and coefficient of variation of canopy vegetation height within 120‐m patches were negatively correlated with NDVI across the 28 NEON sites. However, forest type always had a significant interaction term between these GSM‐SD and NDVI relationships. Our study demonstrates that GSMs are useful to describe the landscape composition and configuration of structural diversity and its relationship with productivity that warrants further consideration for spatially motivated management decisions.
more »
« less
The geodiv r package: Tools for calculating gradient surface metrics
1. The geodiv r package calculates gradient surface metrics from imagery and other gridded datasets to provide continuous measures of landscape heterogeneity for landscape pattern analysis. 2. geodiv is the first open-source, command line toolbox for calculating many gradient surface metrics and easily integrates parallel computing for applications with large images or rasters (e.g. remotely sensed data). All functions may be applied either globally to derive a single metric for an entire image or locally to create a texture image over moving windows of a user-defined extent. 3. We present a comprehensive description of the functions available through geodiv. A supplemental vignette provides an example application of geodiv to the fields of landscape ecology and biogeography. 4. geodiv allows users to easily retrieve estimates of spatial heterogeneity for a variety of purposes, enhancing our understanding of how environmental structure influences ecosystem processes. The package works with any continuous imagery and may be widely applied in many fields where estimates of surface complexity are useful.
more »
« less
- PAR ID:
- 10297530
- Editor(s):
- Goslee, Sarah
- Date Published:
- Journal Name:
- Methods in Ecology and Evolution
- Volume:
- 0
- Issue:
- 0
- ISSN:
- 2041-210X
- Page Range / eLocation ID:
- 1-7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract As global climate change alters the magnitude and rates of environmental stressors, predicting the extent of ecosystem degradation driven by these rapidly changing conditions becomes increasingly urgent. At the landscape scale, disturbances and stressors can increase spatial variability and heterogeneity — indicators that can serve as potential early warnings of declining ecosystem resilience. Increased spatial variability in salt marshes at the landscape scale has been used to quantify the propagation of ponding in salt marsh interiors, but ponding at the landscape scale follows a state change rather than predicts it. Here, we suggest a novel application of commonly collected surface elevation table (SET) data and explore millimeter-scale marsh surface microtopography as a potential early indicator of ecosystem transition. We find an increase in spatial variability using multiple metrics of microtopographic heterogeneity in vulnerable salt marsh communities across the North American Atlantic seaboard. Increasing microtopographic heterogeneity in vulnerable salt marshes mirrored increasing trends in variance when a tipping point is approached in other alternative stable state systems — indicating that early warning signals of marsh drowning and ecosystem transition are observable at small-spatial scales prior to runaway ecosystem degradation. Congruence between traditional and novel metrics of marsh vulnerability suggests that microtopographic metrics can be used to identify hidden vulnerability before widespread marsh degradation. This novel analysis can be easily applied to existing SET records expanding the traditional focus on vertical change to additionally encapsulate lateral processes.more » « less
-
Remote sensing datasets usually have a wide range of spatial and spectral resolutions. They provide unique advantages in surveillance systems, and many government organizations use remote sensing multispectral imagery to monitor security-critical infrastructures or targets. Artificial Intelligence (AI) has advanced rapidly in recent years and has been widely applied to remote image analysis, achieving state-of-the-art (SOTA) performance. However, AI models are vulnerable and can be easily deceived or poisoned. A malicious user may poison an AI model by creating a stealthy backdoor. A backdoored AI model performs well on clean data but behaves abnormally when a planted trigger appears in the data. Backdoor attacks have been extensively studied in machine learning-based computer vision applications with natural images. However, much less research has been conducted on remote sensing imagery, which typically consists of many more bands in addition to the red, green, and blue bands found in natural images. In this paper, we first extensively studied a popular backdoor attack, BadNets, applied to a remote sensing dataset, where the trigger was planted in all of the bands in the data. Our results showed that SOTA defense mechanisms, including Neural Cleanse, TABOR, Activation Clustering, Fine-Pruning, GangSweep, Strip, DeepInspect, and Pixel Backdoor, had difficulties detecting and mitigating the backdoor attack. We then proposed an explainable AI-guided backdoor attack specifically for remote sensing imagery by placing triggers in the image sub-bands. Our proposed attack model even poses stronger challenges to these SOTA defense mechanisms, and no method was able to defend it. These results send an alarming message about the catastrophic effects the backdoor attacks may have on satellite imagery.more » « less
-
Accurate prediction of walking travel rates is central to wide-ranging applications, including modeling historical travel networks, simulating evacuation from hazards, evaluating military ground troop movements, and assessing risk to wildland firefighters. Most of the existing functions for estimating travel rates have focused on slope as the sole landscape impediment, while some have gone a step further in applying a limited set of multiplicative factors to account for broadly defined surface types (e.g., “on-path” vs. “off-path”). In this study, we introduce the Simulating Travel Rates In Diverse Environments (STRIDE) model, which accurately predicts travel rates using a suite of airborne lidar-derived metrics (slope, vegetation density, and surface roughness) that encompass a continuous spectrum of landscape structure. STRIDE enables the accurate prediction of both on- and off-path travel rates using a single function that can be applied across wide-ranging environmental settings. The model explained more than 80% of the variance in the mean travel rates from three separate field experiments, with an average predictive error less than 16%. We demonstrate the use of STRIDE to map least-cost paths, highlighting its propensity for selecting logically consistent routes and producing more accurate yet considerably greater total travel time estimates than a slope-only model.more » « less
-
The research data repository of the Environmental Data Initiative (EDI) is building on over 30 years of data curation research and experience in the National Science Foundation-funded US Long-Term Ecological Research (LTER) Network. It provides mature functionalities, well established workflows, and now publishes all ‘long-tail’ environmental data. High quality scientific metadata are enforced through automatic checks against community developed rules and the Ecological Metadata Language (EML) standard. Although the EDI repository is far along in making its data findable, accessible, interoperable, and reusable (FAIR), representatives from EDI and the LTER are developing best practices for the edge cases in environmental data publishing. One of these is the vast amount of imagery taken in the context of ecological research, ranging from wildlife camera traps to plankton imaging systems to aerial photography. Many images are used in biodiversity research for community analyses (e.g., individual counts, species cover, biovolume, productivity), while others are taken to study animal behavior and landscape-level change. Some examples from the LTER Network include: using photos of a heron colony to measure provisioning rates for chicks (Clarkson and Erwin 2018) or identifying changes in plant cover and functional type through time (Peters et al. 2020). Multi-spectral images are employed to identify prairie species. Underwater photo quads are used to monitor changes in benthic biodiversity (Edmunds 2015). Sosik et al. (2020) used a continuous Imaging FlowCytobot to identify and measure phyto- and microzooplankton. Cameras at McMurdo Dry Valleys assess snow and ice cover on Antarctic lakes allowing estimation of primary production (Myers 2019). It has been standard practice to publish numerical data extracted from images in EDI; however, the supporting imagery generally has not been made publicly available. Our goal in developing best practices for documenting and archiving these images is for them to be discovered and re-used. Our examples demonstrate several issues. The research questions, and hence, the image subjects are variable. Images frequently come in logical sets of time series. The size of such sets can be large and only some images may be contributed to a dedicated specialized repository. Finally, these images are taken in a larger monitoring context where many other environmental data are collected at the same time and location. Currently, a typical approach to publishing image data in EDI are packages containing compressed (ZIP or tar) files with the images, a directory manifest with additional image-specific metadata, and a package-level EML metadata file. Images in the compressed archive may be organized within directories with filenames corresponding to treatments, locations, time periods, individuals, or other grouping attributes. Additionally, the directory manifest table has columns for each attribute. Package-level metadata include standard coverage elements (e.g., date, time, location) and sampling methods. This approach of archiving logical ‘sets’ of images reduces the effort of providing metadata for each image when most information would be repeated, but at the expense of not making every image individually searchable. The latter may be overcome if the provided manifest contains standard metadata that would allow searching and automatic integration with other images.more » « less
An official website of the United States government

