skip to main content


Search for: All records

Award ID contains: 1927246

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The style of convective force transmission to plates and strain‐localization within and underneath plate boundaries remain debated. To address some of the related issues, we analyze a range of deformation indicators in southern California from the surface to the asthenosphere. Present‐day surface strain rates can be inferred from geodesy. At seismogenic crustal depths, stress can be inferred from focal mechanisms and splitting of shear waves from local earthquakes via crack‐dependent seismic velocities. At greater depths, constraints on rock fabrics are obtained from receiver function anisotropy,PnandPtomography, surface wave tomography, and splitting ofSKSand other teleseismic core phases. We construct a synthesis of deformation‐related observations focusing on quantitative comparisons of deformation style. We find consistency with roughly N‐S compression and E‐W extension near the surface and in the asthenospheric mantle. However, all lithospheric anisotropy indicators show deviations from this pattern.Pnfast axes and dipping foliations from receiver functions are fault‐parallel with no localization to fault traces and match post‐Farallon block rotations in the Western Transverse Ranges. Local shear wave splitting orientations deviate from the stress orientations inferred from focal mechanisms in significant portions of the area. We interpret these observations as an indication that lithospheric fabric, developed during Farallon subduction and subsequent extension, has not been completely reset by present‐day transform motion and may influence the current deformation behavior. This provides a new perspective on the timescales of deformation memory and lithosphere‐asthenosphere interactions.

     
    more » « less
  2. Abstract

    Plate motions in Southern California have undergone a transition from compressional and extensional regimes to a dominantly strike‐slip regime in the Miocene. Strike‐slip motion is most easily accommodated on vertical faults, and major transform fault strands in the region are typically mapped as near vertical on the surface. However, some previous work suggests that these faults have a dipping geometry at depth. We analyze receiver function arrivals that vary harmonically with back azimuth at all available broadband stations in the region. The results show a dominant signal from contrasts in dipping foliation as well as dipping isotropic velocity contrasts from all crustal depths, including from the ductile middle to lower crust. We interpret these receiver function observations as a dipping fault‐parallel structural fabric that is pervasive throughout the region. The strike of these structures and fabrics is parallel to that of nearby fault surface traces. We also plot microseismicity on depth profiles perpendicular to major strike‐slip faults and find consistently NE dipping features in seismicity changing from near vertical (80–85°) on the Elsinore Fault in the Peninsular Ranges to 60–65° slightly further inland on the San Jacinto Fault to 50–55° on the San Andreas Fault. Taken together, the dipping features in seismicity and in rock fabric suggest that preexisting fabrics and faults may have acted as strain guides in the modern slip regime, with reactivation and growth of strike‐slip faults along northeast dipping fabrics both above and below the brittle‐ductile transition.

     
    more » « less
  3. Azimuthal variations in receiver function conversions can image lithospheric structural contrasts and anisotropic fabrics that together compose tectonic grain. We apply this method to data from EarthScope Transportable Array in Alaska and additional stations across the northern Cordillera. The best-resolved quantities are the strike and depth of dipping fabric contrasts or interfaces. We find a strong geographic gradient in such anomalies, with large amplitudes extending inboard from the present-day subduction margin, the Aleutian arc, and an influence of flat-slab subduction of the Yakutat microplate north of the Denali fault. An east–west band across interior Alaska shows low- amplitude crustal anomalies. Anomaly amplitudes correlate with structural intensity (density of aligned geological elements), but are the highest in areas of strong Cenozoic deformation, raising the question of an influence of current stress state. Imaged subsurface strikes show alignment with surface structures. We see concentric strikes around arc volcanoes implying dipping magmatic structures and fabric into the middle crust. Regions with present-day weaker deformation show lower anomaly amplitudes but structurally aligned strikes, suggesting pre-Cenozoic fabrics may have been overprinted or otherwise modified. We observe general coherence of the signal across the brittle-plastic transition. Imaged crustal fabrics are aligned with major faults and shear zones, whereas intrafault blocks show imaged strikes both parallel to and at high angles to major block-bounding faults. High-angle strikes are subparallel to neotectonic deformation, seismicity, fault lineaments, and prominent metallogenic belts, possibly due to overprinting and/or co-evolution with fault-parallel fabrics. We suggest that the underlying tectonic grain in the northern Cordillera is broadly distributed rather than strongly localized. Receiver functions thus reveal key information about the nature and continuity of tectonic fabrics at depth and can provide unique insights into the deformation history and distribution of regional strain in complex orogenic belts. 
    more » « less