skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fabrication of fiber-reinforced composites via immersed electrohydrodynamic direct writing in polymer gels
Fiber-reinforced composites have provided tremendous opportunities in advanced engineering materials, but the fiber generation and spatial distribution are the most challenging aspects. This paper proposes a novel fabrication approach for fiber-reinforced composites with spatially resolved fiber distribution by combining immersion and near-field electrospinning. The new Immersed Electrohydrodynamic Direct-writing (I-EHD) process makes use of an electrostatic force to draw ultrafine fibers and allows the freestanding of electrospun fibers all inside a liquid matrix. This novel approach enables the dynamic control of fiber morphology and 3D spatial distribution inside the composites, which may lead to future scalable 3D printing of multifunctional composites.  more » « less
Award ID(s):
1928702
PAR ID:
10474978
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Link
Date Published:
Journal Name:
MRS Communications
Volume:
13
Issue:
6
ISSN:
2159-6867
Page Range / eLocation ID:
1038 to 1045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrospinning is a versatile approach to generate nanofibers in situ. Yet, recently, wet electrospinning has been introduced as a more efficient way to deposit isolated fibers inside bulk materials. In wet electrospinning, a liquid bath is adopted, instead of a solid collector, for fiber collection. However, despite several studies focused on wet electrospinning to yield polymer composites, few studies have investigated wet electrospinning to yield ceramic composites. In this paper, we propose a novel in-situ fabrication approach for nanofiber-reinforced ceramic composites based on an enhanced wet-electrospinning method. Our method uses electrospinning to draw polymer nanofibers directly into a reactive pre-ceramic gel, which is later activated to yield advanced nanofiber-reinforced ceramic composites. We demonstrate our method by investigating wet electrospun Polyacrylonitrile and Poly(ethylene oxide) fiber-reinforced geopolymer composites, with fiber weight fractions in the range 0.1–1.0 wt%. Wet electrospinning preserves the amorphous structure of geopolymer while changing the molecular arrangement. Wet electrospinning leads to an increase in both the fraction of mesopores and the overall porosity of geopolymer composites. The indentation modulus is in the range 6.76–8.90 GPa and the fracture toughness is in the range 0.49–0.76 MPam with a clear stiffening and toughening effect observed for Poly(ethylene oxide)-reinforced geopolymer composites. This work demonstrates the viability of wet electrospinning to fabricate multifunctional nanofiber-reinforced composites. 
    more » « less
  2. null (Ed.)
    Abstract Pellet-based extrusion deposition of carbon fiber-reinforced composites at high material deposition rates has recently gained much attention due to its applications in large-scale additive manufacturing. The mechanical and physical properties of large-volume components largely depend on their reinforcing fiber length. However, very few studies have been done thus far to have a direct comparison of additively fabricated composites reinforced with different carbon fiber lengths. In this study, a new additive manufacturing (AM) approach to fabricate long fiber-reinforced polymer (LFRP) was first proposed. A pellet-based extrusion deposition method was implemented, which directly used thermoplastic pellets and continuous fiber tows as feedstock materials. Discontinuous long carbon fibers, with an average fiber length of 20.1 mm, were successfully incorporated into printed LFRP samples. The printed LFRP samples were compared with short fiber-reinforced polymer (SFRP) and continuous fiber-reinforced polymer (CFRP) counterparts through mechanical tests and microstructural analyses. The carbon fiber dispersion, distribution of carbon fiber length and orientation, and fiber wetting were studied. As expected, a steady increase in flexural strength was observed with increasing fiber length. The carbon fibers were highly oriented along the printing direction. A more uniformly distributed discontinuous fiber reinforcement was found within printed SFRP and LFRP samples. Due to decreased fiber impregnation time and lowered impregnation rate, the printed CFRP samples showed a lower degree of impregnation and worse fiber wetting conditions. The feasibility of the proposed AM methods was further demonstrated by fabricating large-volume components with complex geometries. 
    more » « less
  3. Abstract Cultivated natural fibers have a huge possibility for green and sustainable reinforcement for polymers, but their limited load-bearing ability and flammability prevent them from wide applications in composites. According to the beam theory, normal stress is the maximum at the outermost layers but zero at the mid-plane under bending (with (non)linear strain distribution). Shear stress is the maximum at the mid-plane but manageable for most polymers. Accordingly, a laminated composite made of hybrid fiber-reinforced shape memory photopolymer was developed, incorporating strong synthetic glass fibers over a weak core of natural hemp fibers. Even with a significant proportion of natural hemp fibers, the mechanical properties of the hybrid composites were close to those reinforced solely with glass fibers. The composites exhibited good shape memory properties, with at least 52% shape fixity ratio and 71% shape recovery ratio, and 24 MPa recovery stress. After 40 s burning, a hybrid composite still maintained 83.53% of its load carrying capacity. Therefore, in addition to largely maintaining the load carrying capacity through the hybrid reinforcement design, the use of shape memory photopolymer endowed a couple of new functionalities to the composites: the plastically deformed laminated composite beam can largely return to its original shape due to the shape memory effect of the polymer matrix, and the flame retardancy of the polymer matrix makes the flammable hemp fiber survive the fire hazard. The findings of this study present exciting prospects for utilizing low-strength and flammable natural fibers in multifunctional load-bearing composites that possess both flame retardancy and shape memory properties. 
    more » « less
  4. Abstract Composites play progressively significant roles across a spectrum of applications involving high‐performance materials and products within industries such as aerospace, naval, automotive, construction, missiles, and defense technology. Notably, oriented fiber composites have garnered substantial attention due to their advantageous attributes like a high strength‐to‐weight ratio and controlled anisotropy. Nonetheless, challenges persist in uneven fiber alignment, fiber clustering within the matrix material, and constraints on fiber volume, impeding the mass production of oriented fiber‐reinforced composites. In this study, we present a novel approach to 3D printing of uniformly aligned short fiber reinforcement in a composite of heavily loaded carbon and nylon. Capitalizing on the additive manufacturing potential of rapidity and precision, the extrusion process induces carbon fiber (CF) alignments in filaments via shear forces. The 3D‐printed structures that were created displayed impressive potential for customization. They consistently demonstrated improved mechanical and thermal properties when compared to the original nylon structures. Our methodology for producing uniformly dispersed and aligned short fiber reinforcement in polymer composites promises to propel the advancement of design and manufacturing for high‐performance composite materials and components. 
    more » « less
  5. Carbon fiber reinforced composites often exhibit large amounts of property scatter. Attempts at understanding composite property scatter have led researchers to generate many 2D models which ignore the 3D phenomenon of entanglement. Previous studies of entanglement have suggested it is correlated to a length scale, but have not had large enough samples to determine its size. In this study, fiber paths of long, entangled, continuous fibers were extracted from CT data of an automotive grade, heavy tow composite. Descriptive metrics of these fiber paths were used to quantify the entanglement as a function of position along the fiber direction. Using this data, several minimum length scales for capturing the behavior of multiple descriptors were determined. These length scales revealed where statistical representation of 3D fiber models provides superior information to that of 2D models. 
    more » « less