skip to main content


Search for: All records

Award ID contains: 1932921

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Stop-and-go traffic poses significant challenges to the efficiency and safety of traffic operations, and its impacts and working mechanism have attracted much attention. Recent studies have shown that Connected and Automated Vehicles (CAVs) with carefully designed longitudinal control have the potential to dampen the stop-and-go wave based on simulated vehicle trajectories. In this study, Deep Reinforcement Learning (DRL) is adopted to control the longitudinal behavior of CAVs and real-world vehicle trajectory data is utilized to train the DRL controller. It considers a Human-Driven (HD) vehicle tailed by a CAV, which are then followed by a platoon of HD vehicles. Such an experimental design is to test how the CAV can help to dampen the stop-and-go wave generated by the lead HD vehicle and contribute to smoothing the following HD vehicles’ speed profiles. The DRL control is trained using real-world vehicle trajectories, and eventually evaluated using SUMO simulation. The results show that the DRL control decreases the speed oscillation of the CAV by 54% and 8%-28% for those following HD vehicles. Significant fuel consumption savings are also observed. Additionally, the results suggest that CAVs may act as a traffic stabilizer if they choose to behave slightly altruistically. 
    more » « less
  4. This paper presents a behavioral car following model, named the chained asymmetric behavior model, that improves on the asymmetric behavior model. This model is inspired by the empirical observation that vehicles react proportionately to the magnitude of disturbance experienced when traversing through a stop-and-go oscillation, deviating from a constant following behavior observed in equilibrium conditions. Findings from simulation experiments suggest that this “second-order” effect significantly affects traffic throughput and evolution under disturbances. Knowledge obtained from the model is leveraged toward designing control for connected automated vehicles in mixed traffic streams.

     
    more » « less