skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dampen the Stop-and-Go Traffic with Connected and Automated Vehicles – A Deep Reinforcement Learning Approach
Stop-and-go traffic poses significant challenges to the efficiency and safety of traffic operations, and its impacts and working mechanism have attracted much attention. Recent studies have shown that Connected and Automated Vehicles (CAVs) with carefully designed longitudinal control have the potential to dampen the stop-and-go wave based on simulated vehicle trajectories. In this study, Deep Reinforcement Learning (DRL) is adopted to control the longitudinal behavior of CAVs and real-world vehicle trajectory data is utilized to train the DRL controller. It considers a Human-Driven (HD) vehicle tailed by a CAV, which are then followed by a platoon of HD vehicles. Such an experimental design is to test how the CAV can help to dampen the stop-and-go wave generated by the lead HD vehicle and contribute to smoothing the following HD vehicles’ speed profiles. The DRL control is trained using real-world vehicle trajectories, and eventually evaluated using SUMO simulation. The results show that the DRL control decreases the speed oscillation of the CAV by 54% and 8%-28% for those following HD vehicles. Significant fuel consumption savings are also observed. Additionally, the results suggest that CAVs may act as a traffic stabilizer if they choose to behave slightly altruistically.  more » « less
Award ID(s):
1932921 1826162
PAR ID:
10318661
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Stop-and-go traffic poses significant challenges to the efficiency and safety of traffic operations, and its impacts and working mechanism have attracted much attention. Recent studies have shown that Connected and Automated Vehicles (CAVs) with carefully designed longitudinal control have the potential to dampen the stop-and-go wave based on simulated vehicle trajectories. In this study, Deep Reinforcement Learning (DRL) is adopted to control the longitudinal behavior of CAVs and real-world vehicle trajectory data is utilized to train the DRL controller. It considers a Human-Driven (HD) vehicle tailed by a CAV, which are then followed by a platoon of HD vehicles. Such an experimental design is to test how the CAV can help to dampen the stop-and-go wave generated by the lead HD vehicle and contribute to smoothing the following HD vehicles’ speed profiles. The DRL control is trained using realworld vehicle trajectories, and eventually evaluated using SUMO simulation. The results show that the DRL control decreases the speed oscillation of the CAV by 54% and 8%-28% for those following HD vehicles. Significant fuel consumption savings are also observed. Additionally, the results suggest that CAVs may act as a traffic stabilizer if they choose to behave slightly altruistically. 
    more » « less
  2. Connected automated vehicles (CAVs), built upon advanced vehicle control and communication technology, can improve traffic throughput, safety, and energy efficiency. Previous studies on CAVs control focus on instability and stability properties of CAV platoons; however, these analyses cannot reveal the damping platoon oscillation characteristics, which are important for enhancing CAV platoon reliability against variant continuous perturbations. To this end, this research seeks to characterize the damping oscillations of CAVs through exploiting the platoon's unforced oscillatory, i.e., damping behavior. Inspired by the mechanical vibration theory, the proposed approach is applied to a CAV platoon with linear car-following control formulated as Helly's model and the predecessor-following communication topology. The proposed approach is applied to a CAV platoon with the linear car-following control formulated as Helly's model and the predecessor-following communication topology. Numerical analysis results show that a periodic perturbation with the resonance frequency of the CAV platoon will amplify the oscillation and lead to the severest oscillatory traffic. Our analysis highlights the importance of preventing platoon oscillations from resonance in ensuring CAV platooning reliability. 
    more » « less
  3. All vehicles must follow the rules that govern traffic behavior, regardless of whether the vehicles are human-driven or Connected, Autonomous Vehicles (CAVs). Road signs indicate locally active rules, such as speed limits and requirements to yield or stop. Recent research has demonstrated attacks, such as adding stickers or dark patches to signs, that cause CAV sign misinterpretation, resulting in potential safety issues. Humans can see and potentially defend against these attacks. But humans can not detect what they can not observe. We have developed the first physical-world attack against CAV traffic sign recognition systems that is invisible to humans. Utilizing Infrared Laser Reflection (ILR), we implement an attack that affects CAV cameras, but humans can not perceive. In this work, we formulate the threat model and requirements for an ILR-based sign perception attack. Next, we evaluate attack effectiveness against popular, CNNbased traffic sign recognition systems. We demonstrate a 100% success rate against stop and speed limit signs in our laboratory evaluation. Finally, we discuss the next steps in our research. 
    more » « less
  4. Platoon formation with connected and automated vehicles (CAVs) in a mixed traffic environment poses significant challenges due to the presence of human-driven vehicles (HDVs) with unknown dynamics and control actions. In this paper, we develop a safety-prioritized receding horizon control framework for creating platoons of HDVs preceded by a CAV Our framework ensures indirect control of the following HDVs by directly controlling the leading CAV given the safety constraints. The framework utilizes a data-driven prediction model that is based on the recursive least squares algorithm and the constant time headway relative velocity car-following model to predict future trajectories of human-driven vehicles. To demonstrate the efficacy of the proposed framework, we conduct numerical simulations and provide the associated scalability, robustness, and performance analyses. 
    more » « less
  5. Connected and automated vehicle (CAV) technology is providing urban transportation managers tremendous opportunities for better operation of urban mobility systems. However, there are significant challenges in real-time implementation as the computational time of the corresponding operations optimization model increases exponentially with increasing vehicle numbers. Following the companion paper (Chen et al. 2021), which proposes a novel automated traffic control scheme for isolated intersections, this study proposes a network-level, real-time traffic control framework for CAVs on grid networks. The proposed framework integrates a rhythmic control method with an online routing algorithm to realize collision-free control of all CAVs on a network and achieve superior performance in average vehicle delay, network traffic throughput, and computational scalability. Specifically, we construct a preset network rhythm that all CAVs can follow to move on the network and avoid collisions at all intersections. Based on the network rhythm, we then formulate online routing for the CAVs as a mixed integer linear program, which optimizes the entry times of CAVs at all entrances of the network and their time–space routings in real time. We provide a sufficient condition that the linear programming relaxation of the online routing model yields an optimal integer solution. Extensive numerical tests are conducted to show the performance of the proposed operations management framework under various scenarios. It is illustrated that the framework is capable of achieving negligible delays and increased network throughput. Furthermore, the computational time results are also promising. The CPU time for solving a collision-free control optimization problem with 2,000 vehicles is only 0.3 second on an ordinary personal computer. 
    more » « less