skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1934960

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A central challenge in topological data analysis is the interpretation of barcodes. The classical algebraic-topological approach to interpreting homology classes is to build maps to spaces whose homology carries semantics we understand and then to appeal to functoriality. However, we often lack such maps in real data; instead, we must rely on a cross-dissimilarity measure between our observations of a system and a reference. In this paper, we develop a pair of computational homological algebra approaches for relating persistent homology classes and barcodes:persistent extension, which enumerates potential relations between homology classes from two complexes built on the same vertex set, and the method ofanalogous bars, which utilizes persistent extension and the witness complex built from a cross-dissimilarity measure to provide relations across systems. We provide an implementation of these methods and demonstrate their use in comparing homology classes between two samples from the same metric space and determining whether topology is maintained or destroyed under clustering and dimensionality reduction. 
    more » « less