Abstract This paper extends the application of quantile-based Bayesian inference to probability distributions defined in terms of quantiles of observable quantities. Quantile-parameterized distributions are characterized by high shape flexibility and parameter interpretability, making them useful for eliciting information about observables. To encode uncertainty in the quantiles elicited from experts, we propose a Bayesian model based on the metalog distribution and a variant of the Dirichlet prior. We discuss the resulting hybrid expert elicitation protocol, which aims to characterize uncertainty in parameters by asking questions about observable quantities. We also compare and contrast this approach with parametric and predictive elicitation methods.
more »
« less
Search for low mass dark matter in DarkSide-50: the bayesian network approach
Abstract We present a novel approach for the search of dark matter in the DarkSide-50 experiment, relying on Bayesian Networks. This method incorporates the detector response model into the likelihood function, explicitly maintaining the connection with the quantity of interest. No assumptions about the linearity of the problem or the shape of the probability distribution functions are required, and there is no need to morph signal and background spectra as a function of nuisance parameters. By expressing the problem in terms of Bayesian Networks, we have developed an inference algorithm based on a Markov Chain Monte Carlo to calculate the posterior probability. A clever description of the detector response model in terms of parametric matrices allows us to study the impact of systematic variations of any parameter on the final results. Our approach not only provides the desired information on the parameter of interest, but also potential constraints on the response model. Our results are consistent with recent published analyses and further refine the parameters of the detector response model.
more »
« less
- Award ID(s):
- 1935947 2131857 1812540 1812453 1812482 1812492 2310038 2310046 2310048 2310047 2310041 2310049 2209368 2017506 1914410 1812472 1812547
- PAR ID:
- 10408719
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 83
- Issue:
- 4
- ISSN:
- 1434-6052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The graphon (W-graph), including the stochastic block model as a special case, has been widely used in modeling and analyzing network data. Estimation of the graphon function has gained a lot of recent research interests. Most existing works focus on inference in the latent space of the model, while adopting simple maximum likelihood or Bayesian estimates for the graphon or connectivity parameters given the identified latent variables. In this work, we propose a hierarchical model and develop a novel empirical Bayes estimate of the connectivity matrix of a stochastic block model to approximate the graphon function. Based on our hierarchical model, we further introduce a new model selection criterion for choosing the number of communities. Numerical results on extensive simulations and two well-annotated social networks demonstrate the superiority of our approach in terms of parameter estimation and model selection.more » « less
-
Abstract This paper addresses the parameter estimation problem for lithium-ion battery pack models comprising cells in series. This valuable information can be exploited in fault diagnostics to estimate the number of cells that are exhibiting abnormal behaviour, e.g. large resistances or small capacities. In particular, we use a Bayesian approach to estimate the parameters of a two-cell arrangement modelled using equivalent circuits. Although our modeling framework has been extensively reported in the literature, its structural identifiability properties have not been reported yet to the best of the authors’ knowledge. Moreover, most contributions in the literature tackle the estimation problem through point-wise estimates assuming Gaussian noise using e.g. least-squares methods (maximum likelihood estimation) or Kalman filters (maximum a posteriori estimation). In contrast, we apply methods that are suitable for nonlinear and non-Gaussian estimation problems and estimate the full posterior probability distribution of the parameters. We study how the model structure, available measurements and prior knowledge of the model parameters impact the underlying posterior probability distribution that is recovered for the parameters. For two cells in series, a bimodal distribution is obtained whose modes are centered around the real values of the parameters for each cell. Therefore, bounds on the model parameters for a battery pack can be derived.more » « less
-
Abstract We develop a prior probability model for temporal Poisson process intensities through structured mixtures of Erlang densities with common scale parameter, mixing on the integer shape parameters. The mixture weights are constructed through increments of a cumulative intensity function which is modeled nonparametrically with a gamma process prior. Such model specification provides a novel extension of Erlang mixtures for density estimation to the intensity estimation setting. The prior model structure supports general shapes for the point process intensity function, and it also enables effective handling of the Poisson process likelihood normalizing term resulting in efficient posterior simulation. The Erlang mixture modeling approach is further elaborated to develop an inference method for spatial Poisson processes. The methodology is examined relative to existing Bayesian nonparametric modeling approaches, including empirical comparison with Gaussian process prior based models, and is illustrated with synthetic and real data examples.more » « less
-
null (Ed.)A common setting for scientific inference is the ability to sample from a high-fidelity forward model (simulation) without having an explicit probability density of the data. We propose a simulation-based maximum likelihood deconvolution approach in this setting called OMNIFOLD. Deep learning enables this approach to be naturally unbinned and (variable-, and) high-dimensional. In contrast to model parameter estimation, the goal of deconvolution is to remove detector distortions in order to enable a variety of down-stream inference tasks. Our approach is the deep learning generalization of the common Richardson-Lucy approach that is also called Iterative Bayesian Unfolding in particle physics. We show how OMNIFOLD can not only remove detector distortions, but it can also account for noise processes and acceptance effects.more » « less