skip to main content


Title: Large magnetocapacitance beyond 420% in epitaxial magnetic tunnel junctions with an MgAl2O4 barrier
Abstract

Magnetocapacitance (MC) effect has been observed in systems where both symmetries of time-reversal and space-inversion are broken, for examples, in multiferroic materials and spintronic devices. The effect has received increasing attention due to its interesting physics and the prospect of applications. Recently, a large tunnel magnetocapacitance (TMC) of 332% at room temperature was reported using MgO-based (001)-textured magnetic tunnel junctions (MTJs). Here, we report further enhancement in TMC beyond 420% at room temperature using epitaxial MTJs with an MgAl2O4(001) barrier with a cation-disordered spinel structure. This large TMC is partially caused by the high effective tunneling spin polarization, resulted from the excellent lattice matching between the Fe electrodes and the MgAl2O4barrier. The epitaxial nature of this MTJ system sports an enhanced spin-dependent coherent tunneling effect. Among other factors leading to the large TMC are the appearance of the spin capacitance, the large barrier height, and the suppression of spin flipping through the MgAl2O4barrier. We explain the observed TMC by the Debye-Fröhlich modelled calculation incorporating Zhang-sigmoid formula, parabolic barrier approximation, and spin-dependent drift diffusion model. Furthermore, we predict a 1000% TMC in MTJs with a spin polarization of 0.8. These experimental and theoretical findings provide a deeper understanding on the intrinsic mechanism of the TMC effect. New applications based on large TMC may become possible in spintronics, such as multi-value memories, spin logic devices, magnetic sensors, and neuromorphic computing.

 
more » « less
Award ID(s):
1936221
NSF-PAR ID:
10367111
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Magnetic tunnel junctions (MTJs) in the field of spintronics have received enormous attention owing to their fascinating spin phenomena for fundamental physics and potential applications. MTJs exhibit a large tunnel magnetoresistance (TMR) at room temperature. However, TMR depends strongly on the bias voltage, which reduces the magnitude of TMR. On the other hand, tunnel magnetocapacitance (TMC), which has also been observed in MTJs, can be increased when subjecting to a biasing voltage, thus exhibiting one of the most interesting spin phenomena. Here we report a large voltage-induced TMC beyond 330% in MgO-based MTJs, which is the largest value ever reported for MTJs. The voltage dependence and frequency characteristics of TMC can be explained by the newly proposed Debye-Fröhlich model using Zhang-sigmoid theory, parabolic barrier approximation, and spin-dependent drift diffusion model. Moreover, we predict that the voltage-induced TMC ratio could reach over 3000% in MTJs. It is a reality now that MTJs can be used as capacitors that are small in size, broadly ranged in frequencies and controllable by a voltage. Our theoretical and experimental findings provide a deeper understanding on the exact mechanism of voltage-induced AC spin transports in spintronic devices. Our research may open new avenues to the development of spintronics applications, such as highly sensitive magnetic sensors, high performance non-volatile memories, multi-functional spin logic devices, voltage controlled electronic components, and energy storage devices.

     
    more » « less
  2. The inverse spinel ferrimagnetic NiCo2O4possesses high magnetic Curie temperature TC, high spin polarization, and strain-tunable magnetic anisotropy. Understanding the thickness scaling limit of these intriguing magnetic properties in NiCo2O4thin films is critical for their implementation in nanoscale spintronic applications. In this work, we report the unconventional magnetotransport properties of epitaxial (001) NiCo2O4films on MgAl2O4substrates in the ultrathin limit. Anomalous Hall effect measurements reveal strong perpendicular magnetic anisotropy for films down to 1.5 unit cell (1.2 nm), while TCfor 3 unit cell and thicker films remains above 300 K. The sign change in the anomalous Hall conductivity [Formula: see text] and its scaling relation with the longitudinal conductivity ([Formula: see text]) can be attributed to the competing effects between impurity scattering and band intrinsic Berry curvature, with the latter vanishing upon the thickness driven metal–insulator transition. Our study reveals the critical role of film thickness in tuning the relative strength of charge correlation, Berry phase effect, spin–orbit interaction, and impurity scattering, providing important material information for designing scalable epitaxial magnetic tunnel junctions and sensing devices using NiCo2O4.

     
    more » « less
  3. The single-molecule magnet (SMM) is demonstrated here to transform conventional magnetic tunnel junctions (MTJ), a memory device used in present-day computers, into solar cells. For the first time, we demonstrated an electronic spin-dependent solar cell effect on an SMM-transformed MTJ under illumination from unpolarized white light. We patterned cross-junction-shaped devices forming a CoFeB/MgO/CoFeB-based MTJ. The MgO barrier thickness at the intersection between the two exposed junction edges was less than the SMM extent, which enabled the SMM molecules to serve as channels to conduct spin-dependent transport. The SMM channels yielded a region of long-range magnetic ordering around these engineered molecular junctions. Our SMM possessed a hexanuclear [Mn6(μ3-O)2(H2N-sao)6(6-atha)2(EtOH)6] [H2N-saoH = salicylamidoxime, 6-atha = 6-acetylthiohexanoate] complex and thiols end groups to form bonds with metal films. SMM-doped MTJs were shown to exhibit a solar cell effect and yielded ≈ 80 mV open-circuit voltage and ≈ 10 mA/cm2 saturation current density under illumination from one sun equivalent radiation dose. A room temperature Kelvin Probe AFM (KPAFM) study provided direct evidence that the SMM transformed the electronic properties of the MTJ's electrodes over a lateral area in excess of several thousand times larger in extent than the area spanned by the molecular junctions themselves. The decisive factor in observing this spin photovoltaic effect is the formation of SMM spin channels between the two different ferromagnetic electrodes, which in turn is able to catalyze the long-range transformation in each electrode around the junction area. 
    more » « less
  4. Abstract

    Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon‐based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions. However, these TMR structures are not grown using a silicon‐compatible deposition process, and controlling their AFM order required external magnetic fields. Here are shown three‐terminal AFM tunnel junctions based on the noncollinear antiferromagnet PtMn3, sputter‐deposited on silicon. The devices simultaneously exhibit electrical switching using electric currents, and electrical readout by a large room‐temperature TMR effect. First‐principles calculations explain the TMR in terms of the momentum‐resolved spin‐dependent tunneling conduction in tunnel junctions with noncollinear AFM electrodes.

     
    more » « less
  5. Abstract

    Electric currents carrying a net spin polarization are widely used in spintronics, whereas globally spin-neutral currents are expected to play no role in spin-dependent phenomena. Here we show that, in contrast to this common expectation, spin-independent conductance in compensated antiferromagnets and normal metals can be efficiently exploited in spintronics, provided their magnetic space group symmetry supports a non-spin-degenerate Fermi surface. Due to their momentum-dependent spin polarization, such antiferromagnets can be used as active elements in antiferromagnetic tunnel junctions (AFMTJs) and produce a giant tunneling magnetoresistance (TMR) effect. Using RuO2as a representative compensated antiferromagnet exhibiting spin-independent conductance along the [001] direction but a non-spin-degenerate Fermi surface, we design a RuO2/TiO2/RuO2(001) AFMTJ, where a globally spin-neutral charge current is controlled by the relative orientation of the Néel vectors of the two RuO2electrodes, resulting in the TMR effect as large as ~500%. These results are expanded to normal metals which can be used as a counter electrode in AFMTJs with a single antiferromagnetic layer or other elements in spintronic devices. Our work uncovers an unexplored potential of the materials with no global spin polarization for utilizing them in spintronics.

     
    more » « less