skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1936388

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report better-than-classical success probabilities for a complete Grover quantum search algorithm on the largest scale demonstrated to date, of up to five qubits, using two different IBM platforms. This is enabled by error suppression via robust dynamical decoupling. Further improvements arise after the use of measurement error mitigation, but the latter is insufficient by itself for achieving better-than-classical performance. For two qubits, we demonstrate a 99.5% success probability via the use of the [[4, 2, 2]] quantum error-detection (QED) code. This constitutes a demonstration of quantum algorithmic breakeven via QED. Along the way, we introducealgorithmic error tomography(AET), a method that provides a holistic view of the errors accumulated throughout an entire quantum algorithm, filtered via the errors detected by the QED code used to encode the circuit. We demonstrate that AET provides a stringent test of an error model based on a combination of amplitude damping, dephasing, and depolarization. 
    more » « less
  2. Abstract Decoherence-free subspaces and subsystems (DFS) preserve quantum information by encoding it into symmetry-protected states unaffected by decoherence. An inherent DFS of a given experimental system may not exist; however, through the use of dynamical decoupling (DD), one can induce symmetries that support DFSs. Here, we provide the first experimental demonstration of DD-generated decoherence-free subsystem logical qubits. Utilizing IBM Quantum superconducting processors, we investigate two and three-qubit DFS codes comprising up to six and seven noninteracting logical qubits, respectively. Through a combination of DD and error detection, we show that DFS logical qubits can achieve up to a 23% improvement in state preservation fidelity over physical qubits subject to DD alone. This constitutes a beyond-breakeven fidelity improvement for DFS-encoded qubits. Our results showcase the potential utility of DFS codes as a pathway toward enhanced computational accuracy via logical encoding on quantum processors. 
    more » « less
  3. Abstract We present an open-source software package called “Hamiltonian Open Quantum System Toolkit (HOQST), a collection of tools for the investigation of open quantum system dynamics in Hamiltonian quantum computing, including both quantum annealing and the gate-model of quantum computing. It features the key master equations (MEs) used in the field, suitable for describing the reduced system dynamics of an arbitrary time-dependent Hamiltonian with either weak or strong coupling to infinite-dimensional quantum baths. We present an overview of the theories behind the various MEs and provide examples to illustrate typical workflows in HOQST. We present an example that shows that HOQST can provide order of magnitude speedups compared to “Quantum Toolbox in Python (QuTiP), for problems with time-dependent Hamiltonians. The package is ready to be deployed on high performance computing (HPC) clusters and is aimed at providing reliable open-system analysis tools for noisy intermediate-scale quantum (NISQ) devices. 
    more » « less
  4. Free, publicly-accessible full text available February 1, 2026
  5. We build upon recent work on the use of machine-learning models to estimate Hamiltonian parameters using continuous weak measurement of qubits as input. We consider two settings for the training of our model: (1) supervised learning, where the weak-measurement training record can be labeled with known Hamiltonian parameters, and (2) unsupervised learning, where no labels are available. The first has the advantage of not requiring an explicit representation of the quantum state, thus potentially scaling very favorably to a larger number of qubits. The second requires the implementation of a physical model to map the Hamiltonian parameters to a measurement record, which we implement using an integrator of the physical model with a recurrent neural network to provide a model-free correction at every time step to account for small effects not captured by the physical model. We test our construction on a system of two qubits and demonstrate accurate prediction of multiple physical parameters in both the supervised context and the unsupervised context. We demonstrate that the model benefits from larger training sets, establishing that it is “learning,” and we show robustness regarding errors in the assumed physical model by achieving accurate parameter estimation in the presence of unanticipated single-particle relaxation. 
    more » « less
  6. We present an open-source database of superconducting quantum device designs that may be used as the starting point for customized devices. Each design can be generated programmatically using the open-source Qiskit Metal package, and simulated using finite-element electromagnetic solvers. We present a robust workflow for achieving high accuracy on design simulations. Many designs in the database are experimentally validated, showing excellent agreement between simulated and measured parameters. Our database includes a front-end interface that allows users to generate "best-guess" designs based on desired circuit parameters. This project lowers the barrier to entry for research groups seeking to make a new class of devices by providing them a well-characterized starting point from which to refine their designs. 
    more » « less
  7. Transmon qubits experience open-system effects that manifest as noise at a broad range of frequencies. We present a model of these effects using the Redfield master equation with a hybrid bath consisting of low- and high-frequency components. We use two-level fluctuators to simulate 1/f-like noise behavior, which is a dominant source of decoherence for superconducting qubits. By measuring quantum state fidelity under free evolution with and without dynamical decoupling (DD), we can fit the low- and high-frequency noise parameters in our model. We train and test our model using experiments on quantum devices available through IBM quantum experience. Our model accurately predicts the fidelity decay of random initial states, including the effect of DD pulse sequences. We compare our model with two simpler models and confirm the importance of including both high frequency and 1/f noise in order to accurately predict transmon behavior. 
    more » « less