skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hamiltonian learning using machine-learning models trained with continuous measurements
We build upon recent work on the use of machine-learning models to estimate Hamiltonian parameters using continuous weak measurement of qubits as input. We consider two settings for the training of our model: (1) supervised learning, where the weak-measurement training record can be labeled with known Hamiltonian parameters, and (2) unsupervised learning, where no labels are available. The first has the advantage of not requiring an explicit representation of the quantum state, thus potentially scaling very favorably to a larger number of qubits. The second requires the implementation of a physical model to map the Hamiltonian parameters to a measurement record, which we implement using an integrator of the physical model with a recurrent neural network to provide a model-free correction at every time step to account for small effects not captured by the physical model. We test our construction on a system of two qubits and demonstrate accurate prediction of multiple physical parameters in both the supervised context and the unsupervised context. We demonstrate that the model benefits from larger training sets, establishing that it is “learning,” and we show robustness regarding errors in the assumed physical model by achieving accurate parameter estimation in the presence of unanticipated single-particle relaxation.  more » « less
Award ID(s):
1936388
PAR ID:
10552826
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Applied
Volume:
22
Issue:
4
ISSN:
2331-7019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate modeling of the gain spectrum in erbium-doped fiber amplifiers (EDFAs) is essential for optimizing optical network performance, particularly as networks evolve toward multi-vendor solutions. In this work, we propose a generalized few-shot transfer learning architecture based on a semi-supervised self-normalizing neural network (SS-NN) that leverages internal EDFA features—such as VOA input/output power and attenuation—to improve gain spectrum prediction. Our SS-NN model employs a two-phase training strategy comprising unsupervised pre-training with noise-augmented measurements and supervised fine-tuning with a custom-weighted MSE loss. Furthermore, we extend the framework with transfer learning (TL) techniques that enable both homogeneous (same-feature space) and heterogeneous (different-feature sets) model adaptation across booster, pre-amplifier, and ILA EDFAs. To address feature mismatches in heterogeneous TL, we incorporate a covariance matching loss to align second-order feature statistics between the source and target domains. Extensive experiments conducted across 26 EDFAs in the COSMOS and Open Ireland testbeds demonstrate that the proposed approach significantly reduces the number of measurement requirements on the system while achieving lower mean absolute errors and improved error distributions compared to benchmark methods. 
    more » « less
  2. Visual event perception tasks such as action localization have primarily focused on supervised learning settings under a static observer, i.e., the camera is static and cannot be controlled by an algorithm. They are often restricted by the quality, quantity, and diversity of annotated training data and do not often generalize to out-of-domain samples. In this work, we tackle the problem of active action localization where the goal is to localize an action while controlling the geometric and physical parameters of an active camera to keep the action in the field of view without training data. We formulate an energy-based mechanism that combines predictive learning and reactive control to perform active action localization without rewards, which can be sparse or non-existent in real-world environments. We perform extensive experiments in both simulated and real-world environments on two tasks - active object tracking and active action localization. We demonstrate that the proposed approach can generalize to different tasks and environments in a streaming fashion, without explicit rewards or training. We show that the proposed approach outperforms unsupervised baselines and obtains competitive performance compared to those trained with reinforcement learning. 
    more » « less
  3. In Activities of Daily Living (ADL) research, which has gained prominence due to the burgeoning aging population, the challenge of acquiring sufficient ground truth data for model training is a significant bottleneck. This obstacle necessitates a pivot towards unsupervised representation learning methodologies, which do not require many labeled datasets. The existing research focused on the tradeoff between the fully supervised model and the unsupervised pre-trained model and found that the unsupervised version outperformed in most cases. However, their investigation did not use large enough Human Activity Recognition (HAR) datasets, both datasets resulting in 3 dimensions. This poster extends the investigation by employing a large multivariate time series HAR dataset and experimenting with the models with different combinations of critical training parameters such as batch size and learning rate to observe the performance tradeoff. Our findings reveal that the pre-trained model is comparable to the fully supervised classification with a larger multivariate time series HAR dataset. This discovery underscores the potential of unsupervised representation learning in ADL extractions and highlights the importance of model configuration in optimizing performance. 
    more » « less
  4. We present a novel fine-tuning algorithm in a deep hybrid architecture for semi-supervised text classification. During each increment of the online learning process‚ the fine-tuning algorithm serves as a top-down mechanism for pseudo-jointly modifying model parameters following a bottom-up generative learning pass. The resulting model‚ trained under what we call the Bottom-Up-Top-Down learning algorithm‚ is shown to outperform a variety of competitive models and baselines trained across a wide range of splits between supervised and unsupervised training data. 
    more » « less
  5. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, JM. (Ed.)
    The problem of action localization involves locating the action in the video, both over time and spatially in the image. The current dominant approaches use supervised learning to solve this problem. They require large amounts of annotated training data, in the form of frame-level bounding box annotations around the region of interest. In this paper, we present a new approach based on continual learning that uses feature-level predictions for self-supervision. It does not require any training annotations in terms of frame-level bounding boxes. The approach is inspired by cognitive models of visual event perception that propose a prediction-based approach to event understanding. We use a stack of LSTMs coupled with a CNN encoder, along with novel attention mechanisms, to model the events in the video and use this model to predict high-level features for the future frames. The prediction errors are used to learn the parameters of the models continuously. This self-supervised framework is not complicated as other approaches but is very effective in learning robust visual representations for both labeling and localization. It should be noted that the approach outputs in a streaming fashion, requiring only a single pass through the video, making it amenable for real-time processing. We demonstrate this on three datasets - UCF Sports, JHMDB, and THUMOS’13 and show that the proposed approach outperforms weakly-supervised and unsupervised baselines and obtains competitive performance compared to fully supervised baselines. Finally, we show that the proposed framework can generalize to egocentric videos and achieve state-of-the-art results on the unsupervised gaze prediction task. 
    more » « less