skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 9, 2025

Title: SQuADDS: A validated design database and simulation workflow for superconducting qubit design
We present an open-source database of superconducting quantum device designs that may be used as the starting point for customized devices. Each design can be generated programmatically using the open-source Qiskit Metal package, and simulated using finite-element electromagnetic solvers. We present a robust workflow for achieving high accuracy on design simulations. Many designs in the database are experimentally validated, showing excellent agreement between simulated and measured parameters. Our database includes a front-end interface that allows users to generate "best-guess" designs based on desired circuit parameters. This project lowers the barrier to entry for research groups seeking to make a new class of devices by providing them a well-characterized starting point from which to refine their designs.  more » « less
Award ID(s):
1936388
PAR ID:
10565962
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Quantum Journal
Date Published:
Journal Name:
Quantum
Volume:
8
ISSN:
2521-327X
Page Range / eLocation ID:
1465
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work seeks to remedy two deficiencies in the current nucleic acid nanotechnology software environment: the lack of both a fast and user-friendly visualization tool and a standard for structural analyses of simulated systems. We introduce here oxView, a web browser-based visualizer that can load structures with over 1 million nucleotides, create videos from simulation trajectories, and allow users to perform basic edits to DNA and RNA designs. We additionally introduce open-source software tools for extracting common structural parameters to characterize large DNA/RNA nanostructures simulated using the coarse-grained modeling tool, oxDNA, which has grown in popularity in recent years and is frequently used to prototype new nucleic acid nanostructural designs, model biophysics of DNA/RNA processes, and rationalize experimental results. The newly introduced software tools facilitate the computational characterization of DNA/RNA designs by providing multiple analysis scripts, including mean structures and structure flexibility characterization, hydrogen bond fraying, and interduplex angles. The output of these tools can be loaded into oxView, allowing users to interact with the simulated structure in a 3D graphical environment and modify the structures to achieve the required properties. We demonstrate these newly developed tools by applying them to design and analysis of a range of DNA/RNA nanostructures. 
    more » « less
  2. Open Source Hardware allows users to share, customize, and improve designs, thus enabling technological advancement through communities of practice. We propose open source hardware for educational haptics that permits researchers, educators, and students to share designs arising from their different perspectives, with the potential to expand educational applications. In this paper we present a family of open source kinesthetic haptic devices that build upon the design of a previous educational haptic device, Hapkit 3.0. First, we discuss methods for Hapkit personalization and customization that can be achieved by K-12 students and educators. Next, we describe two kinesthetic haptic device designs that evolved from the original Hapkit 3.0. One uses two standard Hapkits with additional components to form a Pantograph mechanism, and the other uses customized Hapkit elements along with a novel kinematic design to form a serial mechanism. These designs are modular; after building two Hapkits, a user acquires a small number of additional parts to transform them into a two-degree-of-freedom device. The Pantograph mechanism was used in an undergraduate class to teach robotics and haptics to both engineering and nonengineering students. Open source designs for all devices as well as tutorials for customization are available at http://hapkit.stanford.edu. 
    more » « less
  3. Reducing the environmental footprint of electronics and computing devices requires new tools that empower designers to make informed decisions about sustainability during the design process itself. This is not possible with current tools for life cycle assessment (LCA) which require substantial domain expertise and time to evaluate the numerous chips and other components that make up a device. We observe first that informed decision-making does not require absolute metrics and can instead be done by comparing designs. Second, we can use domain-specific heuristics to perform these comparisons. We combine these insights to develop DeltaLCA, an open-source interactive design tool that addresses the dual challenges of automating life cycle inventory generation and data availability by performing comparative analyses of electronics designs. Users can upload standard design files from Electronic Design Automation (EDA) software and the tool will guide them through determining which one has greater carbon footprints. DeltaLCA leverages electronics-specific LCA datasets and heuristics and tries to automatically rank the two designs, prompting users to provide additional information only when necessary. We show through case studies DeltaLCA achieves the same result as evaluating full LCAs, and that it accelerates LCA comparisons from eight expert-hours to a single click for devices with ~30 components, and 15 minutes for more complex devices with ~100 components. 
    more » « less
  4. A challenging problem in modern archaeology is to automatically identify fragmented heritage objects by their decorative full designs, such as the pottery sherds from Southeastern America. The difficulties of this problem lie in: 1) these pottery sherds are usually fragmented so that each sherd only covers a small portion of its underlying full design; 2) these sherds can be so highly degraded that curves may contain missing segments or become very shallow; and 3) curve patterns may overlap with each other from the making of these potteries. This paper presents a deep-learning based framework for matching a sherd with a database of known designs to find its underlying design. This framework contains three steps: 1) extracting curve pattern using an FCN-based curve pattern segmentation method from the digitized sherd's depth map, 2) matching a sherd with a non-composite (single copy of a design) pattern combining template matching algorithm with a dual-source CNN re-ranking method to find its underlying design, and 3) matching a sherd with a composite (multiple copies of a design) pattern using a Chamfer Matching based method. The framework was evaluated on a set of sherds from the heartland of the paddle-stamping tradition with a subset of known paddle-stamped designs of Pre-colonial southeastern North America. Extensive experimental results show the effectiveness of the proposed framework and algorithms. 
    more » « less
  5. Abstract—Thermophotovoltaic and rectenna devices can be greatly improved by frequency-selective emitters, which narrow the emission spectrum of a heat source to couple to the most efficient operating point of the device. We have simulated an alumina and titanium emitter using a Fabry-Perot design which is intended for use with thermal energy converters operating in the near to mid infrared region. 
    more » « less