skip to main content


Search for: All records

Award ID contains: 1939037

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Robots are increasingly being introduced into domains where they assist or collaborate with human counterparts. There is a growing body of literature on how robots might serve as collaborators in creative activities, but little is known about the factors that shape human perceptions of robots as creative collaborators. This paper investigates the effects of a robot’s social behaviors on people’s creative thinking and their perceptions of the robot. We developed an interactive system to facilitate collaboration between a human and a robot in a creative activity. We conducted a user study (n = 12), in which the robot and adult participants took turns to create compositions using tangram pieces projected on a shared workspace. We observed four human behavioral traits related to creativity in the interaction: accepting robot inputs as inspiration, delegating the creative lead to the robot, communicating creative intents, and being playful in the creation. Our findings suggest designs for co-creation in social robots that consider the adversarial effect of giving the robot too much control in creation, as well as the role playfulness plays in the creative process. 
    more » « less
  2. Displaying emotional states is an important part of nonverbal communication that can facilitate successful interactions. Facial expressions have been studied for their emotional expression, but this work looks at the capacity of body movements to convey different emotions. This work first generates a large set of nonverbal behaviors with a variety of torso and arm properties on a humanoid robot, Quori. Participants in a user study evaluated how much each movement displayed each of eight different emotions. Results indicate that specific movement properties are associated with particular emotions; such as leaning backward and arms held high displaying surprise and leaning forward displaying sadness. Understanding the emotions associated with certain movements can allow for the design of more appropriate behaviors during interactions with humans and could improve people’s perception of the robot. 
    more » « less