skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1940199

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 5, 2026
  2. Active learning is a valuable tool for efficiently exploring complex spaces, finding a variety of uses in materials science. However, the determination of convex hulls for phase diagrams does not neatly fit into traditional active learning approaches due to their global nature. Specifically, the thermodynamic stability of a material is not simply a function of its own energy, but rather requires energetic information from all other competing compositions and phases. Here we present Convex hull-aware Active Learning (CAL), a novel Bayesian algorithm that chooses experiments to minimize the uncertainty in the convex hull. CAL prioritizes compositions that are close to or on the hull, leaving significant uncertainty in other compositions that are quickly determined to be irrelevant to the convex hull. The convex hull can thus be predicted with significantly fewer observations than approaches that focus solely on energy. Intrinsic to this Bayesian approach is uncertainty quantification in both the convex hull and all subsequent predictions (e.g., stability and chemical potential). By providing increased search efficiency and uncertainty quantification, CAL can be readily incorporated into the emerging paradigm of uncertainty-based workflows for thermodynamic prediction. 
    more » « less
  3. null (Ed.)
    Purpose The output of academic literature has increased significantly due to digital technology, presenting researchers with a challenge across every discipline, including materials science, as it is impossible to manually read and extract knowledge from millions of published literature. The purpose of this study is to address this challenge by exploring knowledge extraction in materials science, as applied to digital scholarship. An overriding goal is to help inform readers about the status knowledge extraction in materials science. Design/methodology/approach The authors conducted a two-part analysis, comparing knowledge extraction methods applied materials science scholarship, across a sample of 22 articles; followed by a comparison of HIVE-4-MAT, an ontology-based knowledge extraction and MatScholar, a named entity recognition (NER) application. This paper covers contextual background, and a review of three tiers of knowledge extraction (ontology-based, NER and relation extraction), followed by the research goals and approach. Findings The results indicate three key needs for researchers to consider for advancing knowledge extraction: the need for materials science focused corpora; the need for researchers to define the scope of the research being pursued, and the need to understand the tradeoffs among different knowledge extraction methods. This paper also points to future material science research potential with relation extraction and increased availability of ontologies. Originality/value To the best of the authors’ knowledge, there are very few studies examining knowledge extraction in materials science. This work makes an important contribution to this underexplored research area. 
    more » « less