skip to main content

Search for: All records

Award ID contains: 1940291

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The electric power grid is a critical societal resource connecting multiple infrastructural domains such as agriculture, transportation, and manufacturing. The electrical grid as an infrastructure is shaped by human activity and public policy in terms of demand and supply requirements. Further, the grid is subject to changes and stresses due to diverse factors including solar weather, climate, hydrology, and ecology. The emerging interconnected and complex network dependencies make such interactions increasingly dynamic, posing novel risks, and presenting new challenges to manage the coupled human–natural system. This paper provides a survey of models and methods that seek to explore the significant interconnected impact of the electric power grid and interdependent domains. We also provide relevant critical risk indicators (CRIs) across diverse domains that may be used to assess risks to electric grid reliability, including climate, ecology, hydrology, finance, space weather, and agriculture. We discuss the convergence of indicators from individual domains to explore possible systemic risk, i.e., holistic risk arising from cross-domain interconnections. Further, we propose a compositional approach to risk assessment that incorporates diverse domain expertise and information, data science, and computer science to identify domain-specific CRIs and their union in systemic risk indicators. Our study provides an important first step towards data-driven analysis and predictive modeling of risks in interconnected human–natural systems. 
    more » « less
  2. Emerging building analytics rely on data-driven machine learning algorithms. However, writing these analytics is still challenging— developers need to know not only what data are required by the analytics but also how to reach the data in each individual building, despite the existing solutions to standardizing data and resource management in buildings. To bridge the gap between analytics development and the specific details of reaching actual data in each building, we present Energon, an open-source system that enables portable building analytics. The core of Energon is a new data organization for building as well as tools that can effectively manage building data and support building analytics development. More specifically, we propose a new "logic partition" of data resources in buildings, and this abstraction universally applies to all buildings. We develop a declarative query language accordingly to f ind data resources in this new logic view with high-level queries, thus substantially reducing development efforts. We also develop a query engine with automatic data extraction by traversing building ontology that widely exists in buildings. In this way, Energon enables mapping of analytics requirements to building resources in a building-agnostic manner. Using four types of real-world building analytics, we demonstrate the use of Energon and its effectiveness in reducing development efforts. 
    more » « less
  3. A key barrier to applying any smart technology to a building is the requirement of locating and connecting to the necessary resources among the thousands of sensing and control points, i.e., the metadata mapping problem. Existing solutions depend on exhaustive manual annotation of sensor metadata - a laborious, costly, and hardly scalable process. To reduce the amount of manual effort required, this paper presents a multi-oracle selective sampling framework to leverage noisy labels from information sources with unknown reliability such as existing buildings, which we refer to as weak oracles, for metadata mapping. This framework involves an interactive process, where a small set of sensor instances are progressively selected and labeled for it to learn how to aggregate the noisy labels as well as to predict sensor types. Two key challenges arise in designing the framework, namely, weak oracle reliability estimation and instance selection for querying. To address the first challenge, we develop a clustering-based approach for weak oracle reliability estimation to capitalize on the observation that weak oracles perform differently in different groups of instances. For the second challenge, we propose a disagreement-based query selection strategy to combine the potential effect of a labeled instance on both reducing classifier uncertainty and improving the quality of label aggregation. We evaluate our solution on a large collection of real-world building sensor data from 5 buildings with more than 11, 000 sensors of 18 different types. The experiment results validate the effectiveness of our solution, which outperforms a set of state-of-the-art baselines. 
    more » « less