Precise and eloquent label information is fundamental for interpreting the underlying data distributions distinctively and training of supervised and semi-supervised learning models adequately. But obtaining large amount of labeled data demands substantial manual effort. This obligation can be mitigated by acquiring labels of most informative data instances using Active Learning. However labels received from humans are not always reliable and poses the risk of introducing noisy class labels which will degrade the efficacy of a model instead of its improvement. In this paper, we address the problem of annotating sensor data instances of various Activities of Daily Living (ADLs) in smart home context. We exploit the interactions between the users and annotators in terms of relationships spanning across spatial and temporal space which accounts for an activity as well. We propose a novel annotator selection model SocialAnnotator which exploits the interactions between the users and annotators and rank the annotators based on their level of correspondence. We also introduce a novel approach to measure this correspondence distance using the spatial and temporal information of interactions, type of the relationships and activities. We validate our proposed SocialAnnotator framework in smart environments achieving ≈ 84% statistical confidence in data annotation
more »
« less
Selective Sampling for Sensor Type Classification in Buildings
A key barrier to applying any smart technology to a building is the requirement of locating and connecting to the necessary resources among the thousands of sensing and control points, i.e., the metadata mapping problem. Existing solutions depend on exhaustive manual annotation of sensor metadata - a laborious, costly, and hardly scalable process. To reduce the amount of manual effort required, this paper presents a multi-oracle selective sampling framework to leverage noisy labels from information sources with unknown reliability such as existing buildings, which we refer to as weak oracles, for metadata mapping. This framework involves an interactive process, where a small set of sensor instances are progressively selected and labeled for it to learn how to aggregate the noisy labels as well as to predict sensor types. Two key challenges arise in designing the framework, namely, weak oracle reliability estimation and instance selection for querying. To address the first challenge, we develop a clustering-based approach for weak oracle reliability estimation to capitalize on the observation that weak oracles perform differently in different groups of instances. For the second challenge, we propose a disagreement-based query selection strategy to combine the potential effect of a labeled instance on both reducing classifier uncertainty and improving the quality of label aggregation. We evaluate our solution on a large collection of real-world building sensor data from 5 buildings with more than 11, 000 sensors of 18 different types. The experiment results validate the effectiveness of our solution, which outperforms a set of state-of-the-art baselines.
more »
« less
- PAR ID:
- 10177155
- Date Published:
- Journal Name:
- 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)
- Page Range / eLocation ID:
- 241 to 252
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Recent advances in weakly supervised learn- ing enable training high-quality text classifiers by only providing a few user-provided seed words. Existing methods mainly use text data alone to generate pseudo-labels despite the fact that metadata information (e.g., author and timestamp) is widely available across various domains. Strong label indicators exist in the metadata and it has been long overlooked mainly due to the following challenges: (1) metadata is multi-typed, requiring systematic modeling of different types and their combinations, (2) metadata is noisy, some metadata entities (e.g., authors, venues) are more compelling label indicators than others. In this paper, we propose a novel framework, META, which goes beyond the existing paradigm and leverages metadata as an additional source of weak supervision. Specifically, we organize the text data and metadata together into a text-rich network and adopt network motifs to capture appropriate combinations of metadata. Based on seed words, we rank and filter motif instances to distill highly label-indicative ones as “seed motifs”, which provide additional weak supervision. Following a boot-strapping manner, we train the classifier and expand the seed words and seed motifs iteratively. Extensive experiments and case studies on real-world datasets demonstrate superior performance and significant advantages of leveraging metadata as weak supervision.more » « less
-
Many AI platforms, including traffic monitoring systems, use Federated Learning (FL) for decentralized sensor data processing for learning-based applications while preserving privacy and ensuring secured information transfer. On the other hand, applying supervised learning to large data samples, like high-resolution images requires intensive human labor to label different parts of a data sample. Multiple Instance Learning (MIL) alleviates this challenge by operating over labels assigned to the ’bag’ of instances. In this paper, we introduce Federated Multiple-Instance Learning (FedMIL). This framework applies federated learning to boost the training performance in video-based MIL tasks such as vehicle accident detection using distributed CCTV networks. However, data sources in decentralized settings are not typically Independently and Identically Distributed (IID), making client selection imperative to collectively represent the entire dataset with minimal clients. To address this challenge, we propose DPPQ, a framework based on the Determinantal Point Process (DPP) with a quality-based kernel to select clients with the most diverse datasets that achieve better performance compared to both random selection and current DPP-based client selection methods even with less data utilization in the majority of non-IID cases. This offers a significant advantage for deployment on edge devices with limited computational resources, providing a reliable solution for training AI models in massive smart sensor networks.more » « less
-
null (Ed.)Sensor metadata tagging, akin to the named entity recognition task, provides key contextual information (e.g., measurement type and location) about sensors for running smart building applications. Unfortunately, sensor metadata in different buildings often follows dis- tinct naming conventions. Therefore, learning a tagger currently requires extensive annotations on a per building basis. In this work, we propose a novel framework, SeNsER, which learns a sensor metadata tagger for a new building based on its raw metadata and some existing fully annotated building. It leverages the commonality between different buildings: At the character level, it employs bidirectional neural language models to capture the shared underlying patterns between two buildings and thus regularizes the feature learning process; At the word level, it leverages as features the k-mers existing in the fully annotated building. During inference, we further incorporate the information obtained from sources such as Wikipedia as prior knowledge. As a result, SeNsER shows promising results in extensive experiments on multiple real-world buildings.more » « less
-
Meila, Marina; Zhang, Tong (Ed.)The label noise transition matrix, characterizing the probabilities of a training instance being wrongly annotated, is crucial to designing popular solutions to learning with noisy labels. Existing works heavily rely on finding “anchor points” or their approximates, defined as instances belonging to a particular class almost surely. Nonetheless, finding anchor points remains a non-trivial task, and the estimation accuracy is also often throttled by the number of available anchor points. In this paper, we propose an alternative option to the above task. Our main contribution is the discovery of an efficient estimation procedure based on a clusterability condition. We prove that with clusterable representations of features, using up to third-order consensuses of noisy labels among neighbor representations is sufficient to estimate a unique transition matrix. Compared with methods using anchor points, our approach uses substantially more instances and benefits from a much better sample complexity. We demonstrate the estimation accuracy and advantages of our estimates using both synthetic noisy labels (on CIFAR-10/100) and real human-level noisy labels (on Clothing1M and our self-collected human-annotated CIFAR-10). Our code and human-level noisy CIFAR-10 labels are available at https://github.com/UCSC-REAL/HOC.more » « less