skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1942575

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 2, 2025
  2. Abstract We propose a new theoretical approach for building anonymous mixing mechanisms for cryptocurrencies. Rather than requiring a fully uniform permutation during mixing, we relax the requirement, insisting only that neighboring permutations are similarly likely. This is defined formally by borrowing from the definition of differential privacy. This relaxed privacy definition allows us to greatly reduce the amount of interaction and computation in the mixing protocol. Our construction achieves O ( n· polylog( n )) computation time for mixing n addresses, whereas all other mixing schemes require O ( n 2 ) total computation across all parties. Additionally, we support a smooth tolerance of fail-stop adversaries and do not require any trusted setup. We analyze the security of our generic protocol under the UC framework, and under a stand-alone, game-based definition. We finally describe an instantiation using ring signatures and confidential transactions. 
    more » « less