skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1943722

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study explores the effect of suppressed surface charges on the sedimentation behaviour and fabric of kaolinite clay. In particular, sedimentation behaviours were compared between negatively charged natural kaolin clays and surface-treated and hence electrically suppressed kaolin clays by methylene blue adsorption. The results clearly indicate that the negative surface charge impeded the sedimentation rate of kaolin by resisting particle aggregation. Such an effect appeared the most significant when the surrounding pH was less than the isoelectric point (IEP) of the mineral edges. Under a pH less than IEP, the flocculation time and the final void ratio remarkably dropped after the negative charge neutralisation. This was also corroborated by the scanning electron microscopy images, which further revealed the fabric transition from an edge-to-face flocculated structure to a face-to-face aggregated structure due to the absence of interparticle electrical forces. Conversely, there was no significant fabric change at pH higher than or near the IEP, even though the sedimentation behaviours were accelerated by forming larger flocs. This study imparts important insights into the fundamentals of microstructure and resulting sedimentation behaviour of clayey soils and how they can be changed in electrically neutralised clay. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Amon, Cristina (Ed.)
    Abstract Methane clathrates on continental margins contain the largest stores of hydrocarbons on Earth, yet the role of biomolecules in clathrate formation and stability remains almost completely unknown. Here, we report new methane clathrate-binding proteins (CbpAs) of bacterial origin discovered in metagenomes from gas clathrate-bearing ocean sediments. CbpAs show similar suppression of methane clathrate growth as the commercial gas clathrate inhibitor polyvinylpyrrolidone and inhibit clathrate growth at lower concentrations than antifreeze proteins (AFPs) previously tested. Unlike AFPs, CbpAs are selective for clathrate over ice. CbpA3 adopts a nonglobular, extended structure with an exposed hydrophobic surface, and, unexpectedly, its TxxxAxxxAxx motif common to AFPs is buried and not involved in clathrate binding. Instead, simulations and mutagenesis suggest a bipartite interaction of CbpAs with methane clathrate, with the pyrrolidine ring of a highly conserved proline residue mediating binding by filling empty clathrate cages. The discovery that CbpAs exert such potent control on methane clathrate properties implies that biomolecules from native sediment bacteria may be important for clathrate stability and habitability. 
    more » « less
  3. McCartney, J.S.; Tomac, I. (Ed.)
    Immiscible multiphase flow in porous media is largely affected by interfacial properties, manifested in contact angle and surface tension. The gas-liquid surface tension can be significantly altered by suspended particles at the interface. Particle-laden interfaces have unique properties, for example, a lower surface tension of interfaces laden with surfactants or nanoparticles. This study investigates the impacts of a motile bacterium Escherichia coli ( E. coli , strain ATCC 9637) on the air-water surface tension. Methods of the maximum bubble pressure, the du Noüy ring, and the pendant droplet are used to measure the surface tension of the motile-bacteria-laden interfaces. Measured surface tension remains independent to the E. coli concentration when using the maximum bubble pressure method, decreases with increased E. coli concentration in the du Noüy ring method, and presents time-dependent changes by the pendant drop method. The analyses show that the discrepancies may come from the different convection-diffusion processes of E. coli in the flow among various testing methods. 
    more » « less
  4. McCartney, J.S.; Tomac, I. (Ed.)
    Multiphase flow patterns in porous media largely depend on the properties of the fluids and interfaces such as viscosity, surface tension, and contact angle. Microorganisms in soils change the fluid and interfacial properties, and thus can alter multiphase fluid flow in porous media. This study investigates the impact of motile bacterium Escherichia coli ( E. coli ) on fluid displacement patterns in a microfluidic chip. The fluid displacement is observed during the saturation and the desaturation processes of the microfluidic chip with and without E.coli suspension. Time-lapse photography results show that the presence of E.coli alters the displacement patterns during the wetting and drying process and changes the residual saturation of the chip. Although studies of the impacts of motility on interfacial properties remain elusive, these results bring the expectation to the manipulation of multiphase transport in porous media and the adaptive control of industrial and environmental flow processes using active particles. 
    more » « less