skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: An experimental study of the effect of motile bacteria on the fluid displacement in porous media
Multiphase flow patterns in porous media largely depend on the properties of the fluids and interfaces such as viscosity, surface tension, and contact angle. Microorganisms in soils change the fluid and interfacial properties, and thus can alter multiphase fluid flow in porous media. This study investigates the impact of motile bacterium Escherichia coli ( E. coli ) on fluid displacement patterns in a microfluidic chip. The fluid displacement is observed during the saturation and the desaturation processes of the microfluidic chip with and without E.coli suspension. Time-lapse photography results show that the presence of E.coli alters the displacement patterns during the wetting and drying process and changes the residual saturation of the chip. Although studies of the impacts of motility on interfacial properties remain elusive, these results bring the expectation to the manipulation of multiphase transport in porous media and the adaptive control of industrial and environmental flow processes using active particles.  more » « less
Award ID(s):
1943722
PAR ID:
10213601
Author(s) / Creator(s):
; ; ;
Editor(s):
McCartney, J.S.; Tomac, I.
Date Published:
Journal Name:
E3S Web of Conferences
Volume:
205
ISSN:
2267-1242
Page Range / eLocation ID:
08008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study aims to bridge length scales in immiscible multiphase flow simulation by connecting two published governing equations at the pore-scale and continuum-scale through a novel validation framework. We employ Niessner and Hassnaizadeh's [“A model for two-phase flow in porous media including fluid-fluid interfacial area,” Water Resour. Res. 44(8), W08439 (2008)] continuum-scale model for multiphase flow in porous media, combined with the geometric equation of state of McClure et al. [“Modeling geometric state for fluids in porous media: Evolution of the Euler characteristic,” Transp. Porous Med. 133(2), 229–250 (2020)]. Pore-scale fluid configurations simulated with the lattice-Boltzmann method are used to validate the continuum-scale results. We propose a mapping from the continuum-scale to pore-scale utilizing a generalized additive model to predict non-wetting phase Euler characteristics during imbibition, effectively bridging the continuum-to-pore length scale gap. Continuum-scale simulated measures of specific interfacial area, saturation, and capillary pressure are directly compared to up-scaled pore-scale simulation results. This research develops a numerical framework capable of capturing multiscale flow equations establishing a connection between pore-scale and continuum-scale simulations.

     
    more » « less
  2. Abstract

    A variety of two‐phase flow experiments, currently available in the literature, are compared to study the effect of fluid relaxation on interfacial area generation. Interfacial area is an important parameter that controls mass transfer in many engineered multiphase systems, so it is important to develop accurate predictive tools describing multiphase flow to engineer efficient processes. An empirical predictive relationship was developed describing a specific interfacial area‐wetting saturation relationship that depends on the number of quasi‐equilibrium relaxation points obtained during a drainage or imbibition experiment. The empirical expression was tested and verified using a number of existing datasets. We found that different relationships were needed depending on the fluid properties as well as the porous medium. However, clear trends were observed that can, once a predictive relationship is established for the system, allow us to design multiphase flow systems to produce a desired amount of interfacial area tailored to a particular application.

     
    more » « less
  3. McCartney, J.S. ; Tomac, I. (Ed.)
    Immiscible multiphase flow in porous media is largely affected by interfacial properties, manifested in contact angle and surface tension. The gas-liquid surface tension can be significantly altered by suspended particles at the interface. Particle-laden interfaces have unique properties, for example, a lower surface tension of interfaces laden with surfactants or nanoparticles. This study investigates the impacts of a motile bacterium Escherichia coli ( E. coli , strain ATCC 9637) on the air-water surface tension. Methods of the maximum bubble pressure, the du Noüy ring, and the pendant droplet are used to measure the surface tension of the motile-bacteria-laden interfaces. Measured surface tension remains independent to the E. coli concentration when using the maximum bubble pressure method, decreases with increased E. coli concentration in the du Noüy ring method, and presents time-dependent changes by the pendant drop method. The analyses show that the discrepancies may come from the different convection-diffusion processes of E. coli in the flow among various testing methods. 
    more » « less
  4. Multiphase flows in porous media are important in many natural and industrial processes. Pore-scale models for multiphase flows have seen rapid development in recent years and are becoming increasingly useful as predictive tools in both academic and industrial applications. However, quantitative comparisons between different pore-scale models, and between these models and experimental data, are lacking. Here, we perform an objective comparison of a variety of state-of-the-art pore-scale models, including lattice Boltzmann, stochastic rotation dynamics, volume-of-fluid, level-set, phase-field, and pore-network models. As the basis for this comparison, we use a dataset from recent microfluidic experiments with precisely controlled pore geometry and wettability conditions, which offers an unprecedented benchmarking opportunity. We compare the results of the 14 participating teams both qualitatively and quantitatively using several standard metrics, such as fractal dimension, finger width, and displacement efficiency. We find that no single method excels across all conditions and that thin films and corner flow present substantial modeling and computational challenges. 
    more » « less
  5. Abstract

    We present a new computational fluid dynamics approach for simulating two‐phase flow in hybrid systems containing solid‐free regions and deformable porous matrices. Our approach is based on the derivation of a unique set of volume‐averaged partial differential equations that asymptotically approach the Navier‐Stokes Volume‐of‐Fluid equations in solid‐free regions and multiphase Biot Theory in porous regions. The resulting equations extend our recently developed Darcy‐Brinkman‐Biot framework to multiphase flow. Through careful consideration of interfacial dynamics (relative permeability and capillary effects) and extensive benchmarking, we show that the resulting model accurately captures the strong two‐way coupling that is often exhibited between multiple fluids and deformable porous media. Thus, it can be used to represent flow‐induced material deformation (swelling, compression) and failure (cracking, fracturing). The model's open‐source numerical implementation,hybridBiotInterFoam, effectively marks the extension of computational fluid mechanics into modeling multiscale multiphase flow in deformable porous systems. The versatility of the solver is illustrated through applications related to material failure in poroelastic coastal barriers and surface deformation due to fluid injection in poro‐visco‐plastic systems.

     
    more » « less